精英家教网 > 高中数学 > 题目详情

【题目】已知指数函数yg(x)满足:g(3)=8,定义域为R的函数f(x)=是奇函数.

(1)确定yf(x)yg(x)的解析式;

(2)判断函数f(x)的单调性,并用定义证明;

(3)若对于任意x∈[-5,-1],都有f(1-x)+f(1-2x)>0成立,求x的取值范围.

【答案】(1)f(x)=g(x)=2x;(2)见解析;(3)[2,3].

【解析】

(1)由题意可设代入条件可得函数解析式从而得f(x);

(2)任取x1x2Rx1<x2,化简f(x1)f(x2)0比较大小即可得单调性;

(3)由函数为奇函数可得f(1x)>f(2x1),,结合单调性和定义域可得,从而得解.

(1)

g(3)=a3=8,∴a=2,∴g(x)=2x

f(x)=

f(x)是奇函数,f(-1)+f(1)=0,解得m=2.

经检验,当m=2时,f(x)=为奇函数,

f(x)=;

(2)任取x1x2Rx1<x2

f(x1)-f(x2)=.

x1<x2

∴2x2-2x1>0,

∵1+2x1>0,1+2x2>0,

f(x1)-f(x2)>0,

f(x1)>f(x2),

f(x)是定义在R上的减函数;

(3)∵f(1-x)+f(1-2x)>0,且f(x)为奇函数,

f(1-x)>f(2x-1),

解得2≤x≤3,

x的取值范围是[2,3].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=
(1)求函数f(x)的定义域A;
(2)设B={x|﹣1<x<2},当实数a、b∈(B∩RA)时,证明: |.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1,F2分别是椭圆C: (a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.

(1)若直线MN的斜率为,求C的离心率;

(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xoy中,曲线C1 (t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2 cosθ.
(1)求C2与C3交点的直角坐标;
(2)若C2与C1相交于点A,C3与C1相交于点B,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,PA⊥底面ABCD,E是棱PD上异于P,D的动点.设 =m,则“0<m<2”是三棱锥C﹣ABE的体积不小于1的(

A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别是a,b,c,已知c=6,sinA﹣sinC=sin(A﹣B).若1≤a≤6,则sinC的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上的奇函数,且对任意,当时,都有

(1),试比较的大小关系;

(2)对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,4]上的最大值为9,最小值为1,记f(x)=g(|x|)。

(1)求实数a,b的值;

(2)若不等式f(2k)>1成立,求实数k的取值范围;

(3)定义在[p,q]上的函数(x),设p=x0<x1<…<xi-1<xi<…<xn=q,x1,x2,…,xn-l将区间[p,q]任意划分成n个小区间,如果存在一个常数M>0,使得和式恒成立,则称函数(x)为在[p,q]上的有界变差函数试判断函数f(x)是否为在[0,4]上的有界变差函数?若是,求M的最小值;若不是,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|7﹣6x≤0},集合B={x|y=lg(x+2)},则(UA)∩B等于(
A.(﹣2,
B.( ,+∞)
C.[﹣2,
D.(﹣2,﹣

查看答案和解析>>

同步练习册答案