精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线Cy22px0p8)的焦点为FQ是抛物线C上的一点,且点Q的纵坐标为4,点Q到焦点的距离为5

1)求抛物线C的方程;

2)设直线l不经过Q点且与抛物线交于AB两点,QAQB的斜率分别为K1K2,若K1K2=﹣2,求证:直线AB过定点,并求出此定点.

【答案】1y24x;(2)见解析,定点(6,﹣4

【解析】

1)由抛物线的性质到焦点的距离等于到准线的距离,设的坐标,由题意可得的值,进而求出抛物线的方程;

2)设直线的方程与抛物线联立,求出两根之和及两根之积,进而求出直线的斜率之积,由题意可得参数之间的关系,进而求出直线恒过的定点,注意直线不过,所以求出符合题意的定点的坐标.

解:(1)由题意,直线方程为,由抛物线的性质,到焦点的距离等于到准线的距离,

由题意可得,解得或8,由题意可得

所以抛物线的方程为:

(2)由题意设直线的方程为:,设

联立直线与抛物线的方程可得,整理可得

,①

由(1)可得可得

整理可得

将①代入可得:,即

所以,或

,或

所以直线的方程为:,即恒过

或者恒过

而由题意可得直线不过

可证得直线 恒过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,点为正方形上异于点的动点,将沿翻折成,在翻折过程中,下列说法正确的是(

A.存在点和某一翻折位置,使得

B.存在点和某一翻折位置,使得平面

C.存在点和某一翻折位置,使得直线与平面所成的角为45°

D.存在点和某一翻折位置,使得二面角的大小为60°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某总公司在AB两地分别有甲、乙两个下属公司同种新能源产品(这两个公司每天都固定生产50件产品),所生产的产品均在本地销售.产品进人市场之前需要对产品进行性能检测,得分低于80分的定为次品,需要返厂再加工;得分不低于80分的定为正品,可以进人市场.检测员统计了甲、乙两个下属公司100天的生产情况及每件产品盈利亏损情况,数据如表所示:

1

甲公司

得分

[5060

[6070

[7080

[8090

[90100]

件数

10

10

40

40

50

天数

10

10

10

10

80

2

甲公司

得分

[5060

[6070

[7080

[8090

[90100]

件数

10

5

40

45

50

天数

20

10

20

10

70

3

每件正品

每件次品

甲公司

2万元

3万元

乙公司

3万元

3.5万元

1)分别求甲、乙两个公司这100天生产的产品的正品率(用百分数表示).

2)试问甲、乙两个公司这100天生产的产品的总利润哪个更大?说明理由.

3)若以甲公司这100天中每天产品利润总和对应的频率作为概率,从甲公司这100天随机抽取1天,记这天产品利润总和为X,求X的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象与直线相切,的导函数,且.

1)求

2)函数的图象与曲线关于轴对称,若直线与函数的图象有两个不同的交点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知项数为的数列满足如下条件:①;②若数列满足其中则称的“伴随数列”.

I)数列是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;

II)若的“伴随数列”,证明:

III)已知数列存在“伴随数列”的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中已知椭圆,焦点在x轴上的椭圆的离心率相同,且椭圆的外切矩形ABCD(两组对边分别平行于x轴、y轴)的顶点在椭圆.

1)求椭圆的标准方程.

2)设为椭圆上一点(不与点ABCD重合).

①若直线:,求证:直线l与椭圆相交;

②记①中的直线l与椭圆C1的交点为ST,求证的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人投篮的命中率各不相同,其中乙的命中率是甲的2倍,丙的命中率等于甲与乙的命中率之和.若甲与乙各投篮一次,每人投篮相互独立,则他们都命中的概率为0.18.

1)求甲、乙、丙三人投篮的命中率;

2)现要求甲、乙、丙三人各投篮一次,假设每人投篮相互独立,记三人命中总次数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十五巧板,又称益智图,为清朝浙江省德清知县童叶庚在同治年间所发明,它能拼出草木、花果、鸟兽、鱼虫、文字等图案.十五巧板由十五块板组成一个大正方形(如图1),其中标号为的小板为等腰直角三角形,图是用十五巧板拼出的2019年生肖猪的图案,则从生肖猪图案中任取一点,该点恰好取自阴影部分的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台中,.若点的中点,点靠近点的四等分点.

1)求证:平面

2)若三棱台的体积为,求三棱锥的体积.

注:台体体积公式:,或在分别为台体上下底面积,为台体的高.

查看答案和解析>>

同步练习册答案