精英家教网 > 高中数学 > 题目详情

如图所示,正方体的棱长为1, 分别是棱的中点,过直线的平面分别与棱交于,设,给出以下四个命题:

①平面平面
②当且仅当时,四边形的面积最小;
③四边形周长是单调函数;
④四棱锥的体积为常函数;
以上命题中真命题的序号为           

①②④

解析试题分析:①连结,则由正方体的性质可知,平面,所以平面平面,所以①正确;②连结,因为平面,所以,四边形的对角线是固定的,所以要使面积最小,则只需的长度最小即可,此时当为棱的中点时,即时,此时长度最小,对应四边形的面积最小.所以②正确;③因为,所以四边形是菱形.当时,的长度由大变小.当时,的长度由小变大.所以函数不单调.所以③错误;④连结则四棱锥分割为两个小三棱锥,它们以为底,以分别为顶点的两个小棱锥.因为的面积是个常数,到平面的距离是个常数,所以四棱锥的体积为常函数,所以④正确.所以选C.
考点:1、空间点线面位置关系;2、空间几何体面积与体积的计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

设、表示不同的直线,表示不同的平面,则下列四个命题正确的是          .
①若,且,则;②若,且,则;③若,则;④若,且,则.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

为不重合的两个平面,给出下列命题:
(1)若内的两条相交直线分别平行于内的两条直线,则平行于
(2)若外一条直线内的一条直线平行,则平行;
(3)设相交于直线,若内有一条直线垂直于,则垂直;
(4)直线垂直的充分必要条件是内的两条直线垂直.
上面命题中,真命题的序号           (写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在平面几何里,有勾股定理:“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的面面积与底面面积间的关系。可以得出的正确结论是:“设三棱锥A—BCD的三个侧面ABC、ACD、ADB两两相互垂直,则                                       ”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

四棱锥的底面是边长为的正方形,侧棱长都等于,则经过该棱锥五个顶点的球面面积为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知是两个互相垂直的平面,是一对异面直线,下列五个结论:
(1)(2) (3)
(4)  (5)。其中能得到的结论有     (把所有满足条件的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

三棱锥及其三视图中的主视图和左视图如图9所示,则棱的长为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

曲线上的点到直线的最短距离是____________

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

正方体的棱线长为1,线段上有两个动点E,F,且,则三棱锥的体积为           

查看答案和解析>>

同步练习册答案