精英家教网 > 高中数学 > 题目详情

【题目】如图所示,正方体的棱长为1,线段上有两个动点则下列结论中正确的是__________

平面

②平面平面

③三棱锥的体积为定值

④存在某个位置使得异面直线成角.

【答案】①②③④

【解析】

由正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点EF,且EF=,知:

中,由EF∥BD,且EF平面ABCD,BD平面ABCD,得EF∥平面ABCD,故正确;

中,连接BD,由AC⊥BD,AC⊥DD1,可知AC⊥BDD1B1

BEBDD1B1,BFBDD1B1,∴AC⊥平面BEF,

∵AC平面ACF,∴ACF⊥平面BEF,故正确;

中,三棱锥E﹣ABF的体积与三棱锥A﹣BEF的体积相等,

三棱锥A﹣BEF的底面积和高都是定值,故三棱锥E﹣ABF的体积为定值,故正确;

中,令上底面中心为O,当ED1重合时,此时点FO重合,

则两异面直线所成的角是∠OBC1,可求解∠OBC1=300

故存在某个位置使得异面直线AEBF成角30°,故正确.

故答案为:①②③④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,证明:函数的零点与函数的零点之和小于3;

(2)若对任意 ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是菱形,平面的中点.

(1)求证:平面平面

(2)棱上是否存在一点使得平面若存在,确定的位置并加以证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,共享单车的出现为市民绿色出行提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资240万元,根据行业规定,每个城市至少要投资80万元,由前期市场调研可知:甲城市收益与投入(单位:万元)满足,乙城市收益与投入(单位:万元)满足,设甲城市的投入为(单位:万元),两个城市的总收益为(单位:万元).

(1)当投资甲城市128万元时,求此时公司总收益;

⑵试问如何安排甲、乙两个城市的投资,才能使公司总收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,a∈R,若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知非空集合A、B满足以下四个条件:
①A∪B={1,2,3,4,5,6,7};②A∩B=;③A中的元素个数不是A中的元素;④B中的元素个数不是B中的元素.
若集合A含有2个元素,则满足条件的A有个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设你家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到你家,你每天离家去工作的时间在早上7点—9点之间.

问:离家前不能看到报纸(称事件)的概率是多少?(须有过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设过抛物线 的焦点 的直线 交抛物线于点 ,若以 为直径的圆过点 ,且与 轴交于 两点,则 ( )
A.3
B.2
C.-3
D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式ax2﹣bx﹣1≥0的解集是[ ],求不等式x2﹣bx﹣a<0的解集.

查看答案和解析>>

同步练习册答案