分析 (1)将sin(B-A)+cos(A+B)=0化简得(sinB+cosB)(cosA-sinA)=0,然后分情况讨论解出B和A要注意角的范围.
(2)借助于(1)中的结论,利用正弦定理得出$\frac{a}{c}$=$\frac{sinA}{sinC}$=$\frac{\sqrt{2}}{\sqrt{3}}$,由面积公式得出ac=$\frac{2(3+\sqrt{3})}{sinB}$=4$\sqrt{6}$,联立方程组即可解出答案.
解答 解:(1)∵sin(B-A)+cos(A+B)=0.
∴sinBcosA-cosBsinA+cosAcosB-sinAsinB=0
cosA(sinB+cosB)-sinA(sinB+cosB)=0
(sinB+cosB)(cosA-sinA)=0
①若sinB+cosB=0,则sinB=$\frac{\sqrt{2}}{2}$,cosB=-$\frac{\sqrt{2}}{2}$,B=$\frac{3π}{4}$,C=$\frac{π}{4}$-A
∵$\frac{sinC}{cosC}$=$\frac{sinA+sinB}{cosA+cosB}$,
∴$\frac{sin(\frac{π}{4}-A)}{cos(\frac{π}{4}-A)}$=$\frac{sinA+\frac{\sqrt{2}}{2}}{cosA-\frac{\sqrt{2}}{2}}$,
即$\frac{\frac{\sqrt{2}}{2}cosA-\frac{\sqrt{2}}{2}sinA}{\frac{\sqrt{2}}{2}cosA+\frac{\sqrt{2}}{2}sinA}$=$\frac{sinA+\frac{\sqrt{2}}{2}}{cosA-\frac{\sqrt{2}}{2}}$,
整理得:$\frac{\sqrt{2}}{2}$cos2A-$\frac{\sqrt{2}}{2}$sin2A-$\sqrt{2}$sinAcosA=cosA.
∴$\frac{\sqrt{2}}{2}$cos2A-$\frac{\sqrt{2}}{2}$sin2A=cosA,
即cos(2A+$\frac{π}{4}$)=cosA
∴2A+$\frac{π}{4}$=A+2kπ或2A+$\frac{π}{4}$=-A+2kπ.k∈Z.
∴A=2kπ-$\frac{π}{4}$或A=$\frac{2kπ}{3}-\frac{π}{12}$
又∵0$<A<\frac{π}{4}$,
∴上式无解.
②若cosA-sinA=0,则sinA=cosA=$\frac{\sqrt{2}}{2}$,A=$\frac{π}{4}$,C=$\frac{3π}{4}$-B.
∵$\frac{sinC}{cosC}$=$\frac{sinA+sinB}{cosA+cosB}$,
∴$\frac{sin(\frac{3π}{4}-B)}{cos(\frac{3π}{4}-B)}$=$\frac{\frac{\sqrt{2}}{2}+sinB}{\frac{\sqrt{2}}{2}+cosB}$,
即$\frac{\frac{\sqrt{2}}{2}cosB+\frac{\sqrt{2}}{2}sinB}{-\frac{\sqrt{2}}{2}cosB+\frac{\sqrt{2}}{2}sinB}$=$\frac{\frac{\sqrt{2}}{2}+sinB}{\frac{\sqrt{2}}{2}+cosB}$,
整理得:$\frac{\sqrt{2}}{2}co{s}^{2}B$-$\frac{\sqrt{2}}{2}si{n}^{2}B$+$\sqrt{2}$sinBcosB+cosB=0
∴$\frac{\sqrt{2}}{2}cos2B$+$\frac{\sqrt{2}}{2}$sin2B=-cosB,
即sin(2B+$\frac{π}{4}$)=-sin($\frac{π}{2}-B$)=sin(B-$\frac{π}{2}$),
∴2B+$\frac{π}{4}$=B-$\frac{π}{2}$+2kπ或2B+$\frac{π}{4}$=π-(B-$\frac{π}{2}$)+2kπ.k∈Z.
∴B=2kπ-$\frac{3π}{4}$或B=$\frac{2kπ}{3}$+$\frac{5π}{12}$.
又∵0<B<$\frac{3π}{4}$,
∴B=$\frac{5π}{12}$.
∴sinB=sin($\frac{π}{6}$+$\frac{π}{4}$)=$\frac{1}{2}•\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2}•\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}+\sqrt{6}}{4}$.
(2)由(1)可知A=$\frac{π}{4}$,B=$\frac{5π}{12}$,∴C=$\frac{π}{3}$.
∵S=$\frac{1}{2}$acsinB=3+$\sqrt{3}$,
∴ac=$\frac{8(3+\sqrt{3})}{\sqrt{2}+\sqrt{6}}$=4$\sqrt{6}$.
∵$\frac{a}{sinA}$=$\frac{c}{sinC}$,
∴$\frac{a}{c}$=$\frac{sinA}{sinC}$=$\frac{\sqrt{2}}{\sqrt{3}}$,
∴a=2$\sqrt{2}$,c=2$\sqrt{3}$.
点评 本题考查了三角函数的恒等变换,解三角形,涉及分情况讨论思想.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 5 | B. | 10 | C. | 15 | D. | 20 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com