精英家教网 > 高中数学 > 题目详情
20.在△ABC中,角A,B,C所对的边分别为a,b,c,且$\frac{sinC}{cosC}$=$\frac{sinA+sinB}{cosA+cosB}$,sin(B-A)+cos(A+B)=0.
(1)求sinB的值;
(2)若△ABC的面积为3+$\sqrt{3}$,求a,c的值.

分析 (1)将sin(B-A)+cos(A+B)=0化简得(sinB+cosB)(cosA-sinA)=0,然后分情况讨论解出B和A要注意角的范围.
(2)借助于(1)中的结论,利用正弦定理得出$\frac{a}{c}$=$\frac{sinA}{sinC}$=$\frac{\sqrt{2}}{\sqrt{3}}$,由面积公式得出ac=$\frac{2(3+\sqrt{3})}{sinB}$=4$\sqrt{6}$,联立方程组即可解出答案.

解答 解:(1)∵sin(B-A)+cos(A+B)=0.
∴sinBcosA-cosBsinA+cosAcosB-sinAsinB=0
cosA(sinB+cosB)-sinA(sinB+cosB)=0
(sinB+cosB)(cosA-sinA)=0
①若sinB+cosB=0,则sinB=$\frac{\sqrt{2}}{2}$,cosB=-$\frac{\sqrt{2}}{2}$,B=$\frac{3π}{4}$,C=$\frac{π}{4}$-A
∵$\frac{sinC}{cosC}$=$\frac{sinA+sinB}{cosA+cosB}$,
∴$\frac{sin(\frac{π}{4}-A)}{cos(\frac{π}{4}-A)}$=$\frac{sinA+\frac{\sqrt{2}}{2}}{cosA-\frac{\sqrt{2}}{2}}$,
即$\frac{\frac{\sqrt{2}}{2}cosA-\frac{\sqrt{2}}{2}sinA}{\frac{\sqrt{2}}{2}cosA+\frac{\sqrt{2}}{2}sinA}$=$\frac{sinA+\frac{\sqrt{2}}{2}}{cosA-\frac{\sqrt{2}}{2}}$,
整理得:$\frac{\sqrt{2}}{2}$cos2A-$\frac{\sqrt{2}}{2}$sin2A-$\sqrt{2}$sinAcosA=cosA.
∴$\frac{\sqrt{2}}{2}$cos2A-$\frac{\sqrt{2}}{2}$sin2A=cosA,
即cos(2A+$\frac{π}{4}$)=cosA
∴2A+$\frac{π}{4}$=A+2kπ或2A+$\frac{π}{4}$=-A+2kπ.k∈Z.
∴A=2kπ-$\frac{π}{4}$或A=$\frac{2kπ}{3}-\frac{π}{12}$
又∵0$<A<\frac{π}{4}$,
∴上式无解.
②若cosA-sinA=0,则sinA=cosA=$\frac{\sqrt{2}}{2}$,A=$\frac{π}{4}$,C=$\frac{3π}{4}$-B.
∵$\frac{sinC}{cosC}$=$\frac{sinA+sinB}{cosA+cosB}$,
∴$\frac{sin(\frac{3π}{4}-B)}{cos(\frac{3π}{4}-B)}$=$\frac{\frac{\sqrt{2}}{2}+sinB}{\frac{\sqrt{2}}{2}+cosB}$,
即$\frac{\frac{\sqrt{2}}{2}cosB+\frac{\sqrt{2}}{2}sinB}{-\frac{\sqrt{2}}{2}cosB+\frac{\sqrt{2}}{2}sinB}$=$\frac{\frac{\sqrt{2}}{2}+sinB}{\frac{\sqrt{2}}{2}+cosB}$,
整理得:$\frac{\sqrt{2}}{2}co{s}^{2}B$-$\frac{\sqrt{2}}{2}si{n}^{2}B$+$\sqrt{2}$sinBcosB+cosB=0
∴$\frac{\sqrt{2}}{2}cos2B$+$\frac{\sqrt{2}}{2}$sin2B=-cosB,
即sin(2B+$\frac{π}{4}$)=-sin($\frac{π}{2}-B$)=sin(B-$\frac{π}{2}$),
∴2B+$\frac{π}{4}$=B-$\frac{π}{2}$+2kπ或2B+$\frac{π}{4}$=π-(B-$\frac{π}{2}$)+2kπ.k∈Z.
∴B=2kπ-$\frac{3π}{4}$或B=$\frac{2kπ}{3}$+$\frac{5π}{12}$.
又∵0<B<$\frac{3π}{4}$,
∴B=$\frac{5π}{12}$.
∴sinB=sin($\frac{π}{6}$+$\frac{π}{4}$)=$\frac{1}{2}•\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2}•\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}+\sqrt{6}}{4}$.
(2)由(1)可知A=$\frac{π}{4}$,B=$\frac{5π}{12}$,∴C=$\frac{π}{3}$.
∵S=$\frac{1}{2}$acsinB=3+$\sqrt{3}$,
∴ac=$\frac{8(3+\sqrt{3})}{\sqrt{2}+\sqrt{6}}$=4$\sqrt{6}$.
∵$\frac{a}{sinA}$=$\frac{c}{sinC}$,
∴$\frac{a}{c}$=$\frac{sinA}{sinC}$=$\frac{\sqrt{2}}{\sqrt{3}}$,
∴a=2$\sqrt{2}$,c=2$\sqrt{3}$.

点评 本题考查了三角函数的恒等变换,解三角形,涉及分情况讨论思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an}的首项为1,公差为2,则a8的值等于(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直三棱柱ABC-A1B1C1的所有棱长都相等,且D,E,F分别为BC,BB1,AA1的中点.
(Ⅰ) 求证:平面B1FC∥平面EAD;
(Ⅱ)求证:平面CBC1⊥平面EAD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知对任意x∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,求a的取值范围.
(2)已知对任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线C的顶点在原点,对称轴是x轴,抛物线过点M($\frac{1}{2}$,1).
(1)求C的方程;
(2)过C的焦点F作直线交抛物线于A,B两点,若|AB|=$\frac{25}{12}$,|AF|<|BF|,求|AF|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=3x+$\frac{2}{x-2}$(x>2)的最小值是6+2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等比数列{an}的各项均为正数,a1=2,前3项的和为14.
(1)求数列{an}的通项公式;
(2)设bn=3n-log2an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.过P(5,4)作圆C:x2+y2-2x-2y-3=0的切线,切点分别为A,B.则四边形PACB的面积是(  )
A.5B.10C.15D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=x2-4在[-2,2]上的最大值、最小值分别是(  )
A.0,-4B.4,0C.4,-2D.4,-4

查看答案和解析>>

同步练习册答案