A. | -1<a<1 | B. | 0<a<2 | C. | $a<-\frac{1}{2}$或$a>\frac{3}{2}$ | D. | $-\frac{1}{2}<a<\frac{3}{2}$ |
分析 利用新定义化简不等式可得到a2-a-1>x2-x成立即可,只需a2-a-1>x2-x的最小值即可,由二次函数求最值可得a的不等式,解不等式可得.
解答 解:由已知(x-a)?(x+a)>1成立,
∴(x-a)(1-x-a)>1成立,
即a2-a-1>x2-x成立.
令t=x2-x,只要a2-a-1>tmin.
t=x2-x=(x-$\frac{1}{2}$)2-$\frac{1}{4}$,当x∈R,t≥-$\frac{1}{4}$.
∴a2-a-1>-$\frac{1}{4}$,即4a2-4a-3>0,
解得:a>$\frac{3}{2}$或a<-$\frac{1}{2}$.
故选:C.
点评 本题考查新定义,涉及一元二次不等式的解集和恒成立问题,属基础题.
科目:高中数学 来源: 题型:选择题
A. | {x|x≥0} | B. | {x|x≤0} | C. | {x|x>0} | D. | {x|x<0} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2cos10° | B. | 2sin10° | C. | cos20° | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ($\sqrt{3}$,2) | B. | (1,2) | C. | (-2,-$\sqrt{3}$)∪($\sqrt{3}$,2) | D. | (-2,-$\sqrt{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com