精英家教网 > 高中数学 > 题目详情

【题目】吉安一中举行了一次环保知识竞赛活动解本了次竞赛学生成绩情况,从中抽取部分生的分数(分取正整数,满分为样(样本容)进行统计. 按照 的分作出率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).

(1)求样本容量率分布直方图中的值;

(2)在选取的样本中,从竞赛学生成绩是分以上(含分)的同学中随机抽取名同学到市政广场参加环保知识宣传的志愿者活动,设表示所抽取的名同学中得分在的学生人数的分布列及数学期望.

【答案】(1);(2)分布列见解析,.

【解析】

试题分析:(1)根据频率频数样本容量, 可得,再根据频率之和为,可求的值;(2)首先确定的可能取值为,基本事件的总数为,求出相应概率列出分布列,利用期望公式可得结果.

试题解析:(1)由题意可知,样本容量,又由,得.

(2)由题意可知,分数在人,分数在人,共人,抽取的名同学中得分在的学生个数的可能取值为,则, 的分布列为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资根据长期收益率市场预测投资类产品的收益与投资额成正比投资类产品的收益与投资额的算术平方根成正比已知投资1万元时两类产品的收益分别为0125万元和05万元

1分别写出两类产品的收益与投资额的函数关系;

2该家庭有20万元资金全部用于理财投资问:怎么分配资金能使投资获得最大收益其最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)是R上的偶函数,且当x>0时,函数的解析式为f(x)= .

(1)判断并证明f(x)在(0,+∞)上的单调性;

(2)求当x<0时,函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

(1)若曲线在点处的切线的斜率为5,求的值;

(2)若函数的最小值为,求的值;

(3)当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图几何体是四棱锥,为正三角形, ,且.

(1)求证: 平面平面

(2)是棱的中点,求证:平面

(3)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在区间上的函数,其中常数

(1)若函数分别在区间上单调,试求的取值范围;

(2)当时,方程有四个不相等的实根

①证明:

②是否存在实数,使得函数在区间单调,且的取值范围为,若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新一届班委会的7名成员有三人是上一届的成员,现对7名成员进行如下分工.

(Ⅰ)若正、副班长两职只能由三人选两人担任,则有多少种分工方案?

(Ⅱ)若三人不能再担任上一届各自的职务,则有多少种分工方案?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为(米/单位时间),每单位时间的用氧量为(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为(升).

(1)求关于的函数关系式;

(2)若 ,求当下潜速度取什么值时,总用氧量最少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元,2000元.甲、乙产品都需要在A、B两种设备上加工,在每台A、B设备上加工一件甲所需工时分别为1,2,加工一件乙设备所需工时分别为2,1.A、B两种设备每月有效使用台时数分别为400和500,分别用表示计划每月生产甲,乙产品的件数.

(Ⅰ)用列出满足生产条件的数学关系式,并画出相应的平面区域;

(Ⅱ)问分别生产甲、乙两种产品各多少件,可使收入最大?并求出最大收入.

查看答案和解析>>

同步练习册答案