精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x2-(a+2)x+alnx.
(Ⅰ)当a=1时,求函数f(x)的极小值;
(Ⅱ)当a=-1时,过坐标原点O作曲线y=f(x)的切线,设切点为P(m,n),求实数m的值;
(Ⅲ)设定义在D上的函数y=g(x)在点P(x0,y0)处的切线方程为l:y=h(x),当x≠x0时,若数学公式>0在D内恒成立,则称P为函数y=g(x)的“转点”.当a=8时,试问函数y=f(x)是否存在“转点”.若存在,请求出“转点”的横坐标,若不存在,请说明理由.

解:(Ⅰ)当a=1时,f′(x)=2x-3+==,…2分
当0<x时,f′(x)>0;当<x<1时,f′(x)<0;当x>1时,f′(x)>0.
所以当x=1时,函数f(x)取极小值f(1)=-2,…5分;
(Ⅱ)当a=-1时,f′(x)=2x-1-(x>0),所以切线的斜率
k=2m-1-===,整理可得m2+lnm-1=0,
显然m=1是方程的解,又因为函数y=x2+lnx-1在(0,+∞)上是增函数,
所以方程有唯一的实数解,即m=1,…10分;
(Ⅲ)当a=8时,函数y=f(x)在其图象上一点P(x0,y0)处的切线方程为:
h(x)=
设F(x)=f(x)-h(x),则F(x0)=0,F′(x)=f′(x)-h′(x)
=()-()=(x-x0)(x-
若0<x0<2,F(x)在(x0)上单调递减,所以当x∈(x0)时,
F(x)<F(x0)=0,此时<0,
若x0>2,F(x)在(,x0)上单调递减,所以当x∈(,x0)时,
F(x)>F(x0)=0,此时<0,
所以y=f(x)在(0,2)和(2,+∞)上不存在“转点”,
若x0=2时,F′(x)=,即F(x)在(0,+∞)上是增函数,
当x>x0时,F(x)>F(x0)=0,当x<x0时,F(x)<F(x0)=0,
故点P(x0,f(x0))为“转点”,
故函数y=f(x)存在“转点”,且2是“转点”的横坐标,…15分
分析:(Ⅰ)把a=1代入可得函数的导数,进而可得单调区间,可得极小值;
(Ⅱ)把a=-1代入,可得切线斜率,由斜率公式还可得斜率,由等式可得m=1是唯一的实数解;
(Ⅲ)针对新定义,构造函数F(x)=f(x)-h(x),求其导数,分0<x0<2,x0>2,x0=2三种情况进行讨论,可得结论.
点评:本题考查利用导数研究函数的单调性和极值,涉及新定义,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案