精英家教网 > 高中数学 > 题目详情

【题目】设函数

(1)当 恒成立,求实数的取值范围.

(2)设上有两个极值点.

(A)求实数的取值范围;

(B)求证: .

【答案】(1);(2)(A);(B)证明见解析;

【解析】试题分析:(1)构造函数求导数分 出函数的最值即可,
(2)函数 有两个极值点,即导函数g′(x)有两个不同的实数根,a进行分类讨论,不妨设,则,构造函数 .,利用函数的单调性证明不等式.

试题解析:

解:(1)∵,且

.

,则.

①当时, 上为单调递增函数,

时, ,不合题意.

②当时, 时, 上为单调递增函数,

,不合题意.

③当时, 上为单调递减函数.

时, ,不合题意.

④当时, 上为单调递增函数.

上为单调递减函数.

,符合题意.

综上, .

(2) .

.

,则

由已知上有两个不等的实根.

(A)①当时, 上为单调递增函数,不合题意.

②当时, 上为单调递减函数,不合题意.

③当时,

所以, ,解得.

(B)由已知

.

不妨设,则,则 .

.

,∴上为单调递增函数,

由(A)

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代太极图是一种优美的对称图.如果一个函数的图像能够将圆的面积和周长分成两个相等的部分,我们称这样的函数为圆的“太极函数”.下列命题中错误命题的个数是( )

对于任意一个圆其对应的太极函数不唯一;

如果一个函数是两个圆的太极函数,那么这两个圆为同心圆;

的一个太极函数为

圆的太极函数均是中心对称图形;

奇函数都是太极函数;

偶函数不可能是太极函数.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数区间上单调递增,求实数的取值范围;

(2)设函数 为自然对数的底数.若存在,使不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马, 田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=lg(2sinx﹣1)的定义域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个服装店经营某种服装,在某周内获纯利润y/元与该周每天销售这种服装件数x/件之间的数据如表:

X

3

4

5

6

7

8

9

y

66

69

73

81

89

90

91

已知x12+x22+…+x72=280,x1y1+x2y2+…+x7y7=3487.
(1)求
(2)画出散点图;
(3)判断纯利润y与每天销售件数x之间是否线性相关,如果线性相关,求出线性回归方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某中学举行的物理知识竞赛中,将三个年级参赛学生的成绩在进行整理后分成5组,绘制出如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组.已知第三小组的频数是15.

(1)求成绩在50~70分的频率是多少;
(2)求这三个年级参赛学生的总人数是多少;
(3)求成绩在80~100分的学生人数是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为(
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣

查看答案和解析>>

同步练习册答案