精英家教网 > 高中数学 > 题目详情
设抛物线为焦点,为准线,准线与轴交点为
(1)求
(2)过点的直线与抛物线交于两点,直线与抛物线交于点.
①设三点的横坐标分别为,计算:的值;
②若直线与抛物线交于点,求证:三点共线.
(1)  (2) ,,并根据斜率相等来证明三点共线。

试题分析:(1)
(2)设直线方程:,直线方程:
          
          
   

三点共线。
点评:解决的关键是利用抛物线的定义,以及联立方程组的思想来得到根与系数的关系,结合点的坐标来求解斜率,确定点的位置,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

△ABC的两个顶点为A(-4,0),B(4,0),△ABC周长为18,则C点轨迹为(    )
A.(y≠0)B.(y≠0)
C.(y≠0)D.(y≠0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆(a>b>0)的两焦点为F1、F2,若椭圆上存在一点Q,使∠F1QF2=120º,椭圆离心率e的取值范围为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的一焦点与两顶点为等边三角形的三个顶点,则椭圆的长轴长是短轴长的 (      )
A.B.2倍C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线经过的定点的坐标是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以椭圆的中心为顶点,右焦点为焦点的抛物线方程是     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线与曲线相切于点,则的值为 (    )
A.5B. 6 C. 4D. 9

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)已知椭圆()过点,其左、右焦点分别为,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)若是直线上的两个动点,且,则以为直径的圆是否过定点?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线与抛物线相交于两点,F为抛物线的焦点,若,则k的值为(   )。
A.B.C.D.

查看答案和解析>>

同步练习册答案