精英家教网 > 高中数学 > 题目详情

【题目】某连锁经营公司所属5个零售店某月的销售额和利润额如下表:

商店名称

A

B

C

D

E

销售额x/千万元

3

5

6

7

9

利润额y/百万元

2

3

3

4

5

1)画出散点图,观察散点图,说明两个变量是否线性相关;

2)用最小二乘法计算利润额y对销售额x的线性回归方程;

3)当销售额为4千万元时,估计利润额的大小.

(参考公式:

【答案】1)图见解析,变量线性相关;(2;(32.4百万元

【解析】

1)根据题中数据在直角坐标系中作出这五个点,即可得到散点图,并由图观察这些点是否在一条直线附近,即可判断;

2)根据公式分别求出,即可求出;

3)由(2)中求出的回归方程,将代入,即可估计利润额的大小.

解:(1)散点图如图所示.

由散点图可以看出变量线性相关.

2)设线性回归方程是.

因为,所以

即利润额y对销售额x的线性回归方程为.

3)当销售额为4千万元时,利润额约为(百万元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设命题px0∈(1,+∞),使得5+|x0|=6.qx∈(0,+∞),+81xa

(1)若a=9,判断命题¬ppq,(¬p)∧(¬q)的真假,并说明理由;

(2)设命题rx0Rx02+2x0+a-9≤0判断r成立是q成立的什么条件,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,分别是棱的中点,为棱上一点,平面.

(1)证明:中点;

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某儿童乐园在六一儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为xy.奖励规则如下:

,则奖励玩具一个;

,则奖励水杯一个;

其余情况奖励饮料一瓶.

假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.

)求小亮获得玩具的概率;

)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴,离心率为,且长轴长是短轴长的倍.

(1)求椭圆的标准方程;

(2)设过椭圆左焦点的直线 两点,若对满足条件的任意直线,不等式 恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2018年第一季度五省GDP情况图,则下列描述中不正确的是( )

A. 与去年同期相比2018年第一季度五个省的GDP总量均实现了增长

B. 2018年第一季度GDP增速由高到低排位第5的是浙江省

C. 2018年第一季度GDP总量和增速由高到低排位均居同一位的省只有1

D. 去年同期河南省的GDP总量不超过4000亿元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形中, 交于点,现将沿折起得到三棱锥 分别是 的中点.

(1)求证:

(2)若三棱锥的最大体积为,当三棱锥的体积为,且二面角为锐角时,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线右支上的一点,经过点的直线与双曲线的两条渐近线分别相交于两点.若点分别位于第一,四象限,为坐标原点.时,为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形, 均为等边三角形,点的中点.

(1)证明:平面平面

(2)试问在线段上是否存在点使二面角的余弦值为若存在,请确定点的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案