精英家教网 > 高中数学 > 题目详情
1
a
1
b
<0
,则四个结论:①|a|>|b|;②a+b<ab;
b
a
+
a
b
>2
a2
b
<2a-b
正确的个数是(  )
分析:①不妨取a=-1,b=-2;②根据
1
a
1
b
<0
,可得
1
a
+
1
b
<0
,a<0,b<0,从而a+b<ab;③根据
1
a
1
b
<0
,可得b<a<0,从而
b
a
+
a
b
>2
;④根据
(a-b)2
b
=
a2-2ab+b2
b
<0,可得结论.
解答:解:①∵
1
a
1
b
<0
,∴不妨取a=-1,b=-2,∴|a|=1,|b|=2,∴|a|<|b|,故不成立;
②∵
1
a
1
b
<0
,∴
1
a
+
1
b
<0
,a<0,b<0,∴a+b<ab,故成立;
③∵
1
a
1
b
<0
,∴b<a<0,∴
b
a
+
a
b
>2
,故成立;
④∵
(a-b)2
b
=
a2-2ab+b2
b
<0,∴
a2
b
-2a+b<0
,∴
a2
b
<2a-b
,故成立;
故选C.
点评:本题以不等式为载体,考查不等式的性质,不成立列举反例,成立结论需严密证明.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•金山区一模)若
1
a
1
b
<0
,则下列结论不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

1
a
1
b
<0
,则下列不等式:
①|a|>|b|;
②a+b>ab;
a
b
+
b
a
>2

a2
b
<2a-b
中.
正确的不等式有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

1
a
1
b
<0
,则不等式:①a+b<ab;②|a|<|b|;③ab<b2;④
b
a
+
a
b
>2
中正确的不等式个数(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列不等式中正确的是(  )

查看答案和解析>>

同步练习册答案