精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线与坐标轴的交点都在圆C.

1)求圆C的方程;

2)若圆C与直线交于AB两点,且,求a的值.

【答案】12

【解析】

1)求出曲线与坐标轴的三个交点,根据这三个交点在圆上可求出圆心坐标和半径,从而可得圆的方程;

2)设AB,联立直线与圆的方程,根据根与系数的关系可得,根据,化为,进而可解得 .

1)曲线与坐标轴的交点为(01)(,0)

由题意可设圆C的圆心坐标为(3)

,解得

∴圆C的半径为

∴圆C的方程为.

2)设点AB的坐标分别为AB,其坐标满足方程组,消去得到方程

由已知得,判别式①,

由根与系数的关系得

.

又∵,∴可化为③,

将②代入③解得,经检验,满足①,即

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图:已知四棱锥PABCD的底面ABCD是平行四边形,PA面ABCD,M是AD的中点,N是PC的中点.

(1)求证:MN面PAB;

(2)若平面PMC面PAD,求证:CMAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数.

(1)此函数在点处的切线与直线平行,求实数的值;

(2)在(1)的条件下,若恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,对任意的正整数n,都有Snann-3成立.

(1)求证:存在实数λ使得数列{anλ}为等比数列;

(2)求数列{nan}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,点与抛物线的焦点关于原点对称,过点且斜率为的直线与抛物线交于不同两点,线段的中点为,直线与抛物线交于两点

Ⅰ)判断是否存在实数使得四边形为平行四边形.若存在,求出的值;若不存在,说明理由;

Ⅱ)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=,an+1=3an-1(n∈N*).

(1)若数列{bn}满足bn=an-,求证:{bn}是等比数列;

(2)求数列{an}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn,且a1=1,S3S4S5.

(1)求数列{an}的通项公式;

(2)令bn=(-1)n-1an,求数列{bn}的前2n项和T2n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,对任意的正整数,都有成立,记.

1)求数列与数列的通项公式;

2)记,设数列的前项和为,求证:对任意正整数,都有

3)设数列的前项和为,是否存在正整数,使得成立?若存在,找出一个正整数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数其图象上相邻两个最高点之间的距离为

1的值;

2将函数的图象向右平移个单位,再将所得图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到的图象,求上的单调增区间;

32的条件下,求方程内所有实根之和.

查看答案和解析>>

同步练习册答案