精英家教网 > 高中数学 > 题目详情

(1)已f(数学公式)=数学公式,求f(x)的解析式.
(2)已知y=f(x)是一次函数,且有f[f(x)]=9x+8,求此一次函数的解析式.

解:(1)设(x≠0且x≠1)
(2)设f(x)=ax+b,则f[f(x)]=af(x)+b=a(ax+b)+b=a2x+ab+b=9x+8

∴f(x)的解析式为f(x)=3x+2或f(x)=-3x-4
分析:(1)用换元法求解析式,令t=,整理即可得到f(x)的解析式
(2)用待定系数法求解析式,令f(x)=ax+b,则f[f(x)]=af(x)+b=a(ax+b)+b,令其等于9x+8,根据同一性即可得到待定系数所满足的方程,解方程求出参数值既得.
点评:本题考查函数解析式的求解及常用方法,本题涉及到两个方法换元法与待定系数法,求解此类题的关键是掌握相关方法的原理,技巧,用待定系数法求解析式时要注意同一性思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(1)<f(lgx),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f (x)=x2+ax,
(1)若函数关于x=1对称,求实数 a的值;
(2)若函数关于x=1对称,且x∈[0,3],求函数值域;
(3)若f(x)是定义在(-1,1)上的减函数,且f(a-1)>f(2a),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已f(
1
x
)=
x
1-x
,求f(x)的解析式.
(2)已知y=f(x)是一次函数,且有f[f(x)]=9x+8,求此一次函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调增函数.
(1)试写出满足上述条件的一个函数;
(2)若f(1)<f(lgx),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x-
1
2x

(1)若f(x)=2+
2
2x
,求x的值;
(2)若2tf(2t)+mf(t)≥0对于任意实数t∈[1,2]恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案