精英家教网 > 高中数学 > 题目详情
15.设O为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P,Q关于直线x+my+4=0对称.
(1)求实数m的值;
(2)是否存在直线PQ,满足$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,若存在,求出直线方程;若不存在,请说明理由.

分析 (1)曲线x2+y2+2x-6y+1=0上有两点P、Q,满足关于直线x+my+4=0对称,说明曲线是圆,直线过圆心,易求m的值;
(2)设P(x1,y1)、Q(x2,y2),PQ方程为y=-x+b.联立方程组,结合韦达定理,以及$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0. 求得k的方程,然后求直线PQ的方程.

解答 解:(1)曲线方程为(x+1)2+(y-3)2=9表示圆心为(-1,3),半径为3的圆.
∵点P、Q在圆上且关于直线x+my+4=0对称,
∴圆心(-1,3)在直线上.代入得m=-1.
(2)∵直线PQ与直线y=x+4垂直,
∴设P(x1,y1)、Q(x2,y2),PQ方程为y=-x+b.
将直线y=-x+b代入圆方程,得2x2+2(4-b)x+b2-6b+1=0.
△=4(4-b)2-4×2×(b2-6b+1)>0,得2-3$\sqrt{2}$<b<2+3$\sqrt{2}$.
由韦达定理得x1+x2=-(4-b),x1•x2=$\frac{{b}^{2}-6b+1}{2}$.
y1•y2=b2-b(x1+x2)+x1•x2=$\frac{{b}^{2}-6b+1}{2}$+4b.
∵$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,∴x1x2+y1y2=0,
即b2-6b+1+4b=0.
解得b=1∈(2-3$\sqrt{2}$,2+3$\sqrt{2}$).
∴所求的直线方程为y=-x+1.

点评 本题考查直线与圆的方程的应用,直线的一般式方程,考查函数与方程的思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.下列函数完全相同的是(  )
A.f(x)=x,g(x)=x2B.f(x)=x,g(x)=$\root{3}{x^3}$C.f(x)=x,g(x)=$\sqrt{x}$D.f(x)=$\sqrt{x^2}g(x)=\sqrt{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合A={x|0<x<4},B={x|x<a}若A⊆B,则实数a的取值范围是(  )
A.{a|a≤0}B.{a|0<a≤4}C.{a|a≥4}D.{a|0<a<4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在长方体中ABCD-A1B1C1D1,AB=3,BC=AA1=4,点O是AC的中点.
(1)求异面直线AD1和DC1所成角的余弦值.
(2)求点C到平面BC1D的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a,b,l均为不同直线,α,β均为不同平面,给出下列3个命题:
①若α⊥β,a?β,则a⊥α;
②若α∥β,a?α,b?β,则a⊥b可能成立;
③若a⊥l,b⊥l,则a⊥b不可能成立.
其中,正确的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=|x+2|+|x-2|,x∈R,不等式f(x)≤6的解集为M.
(1)求M;
(2)当a,b∈M时,证明:3|a+b|≤|ab+9|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C的方程为x2+$\frac{{y}^{2}}{4}$=1,定点N(0,1),过圆M:x2+y2=$\frac{4}{5}$上任意一点作圆M的一条切线交椭圆C于A,B两点.
(1)求证:$\overrightarrow{OA}•\overrightarrow{OB}=0$;
(2)若点P,Q在椭圆C上,直线PQ与x轴平行,直线PN交椭圆于另一个不同的点S,问:直线QS是否经过一个定点?若是,求出这个定点的坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}前n项和为Sn,a1=1,满足Sn=2an+1+n,n∈N*,则求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数y=x+$\frac{a}{x}$(a>0)在区间$(0,\sqrt{a}]$上单调递减,在区间$[\sqrt{a},+∞)$上单调递增;函数$h(x)={({x^2}+\frac{1}{x})^3}+{(x+\frac{1}{x^2})^3}(x∈[\frac{1}{2},2])$
(1)请写出函数f(x)=x2+$\frac{a}{x^2}$(a>0)与函数g(x)=xn+$\frac{a}{x^n}$(a>0,n∈N,n≥3)在(0,+∞)的单调区间(只写结论,不证明);
(2)求函数h(x)的最值;
(3)讨论方程h2(x)-3mh(x)+2m2=0(0<m≤30)实根的个数.

查看答案和解析>>

同步练习册答案