精英家教网 > 高中数学 > 题目详情

【题目】北京地铁八通线西起四惠站,东至土桥站,全长,共设13座车站目前八通线执行20141228日制订的计价标准,各站间计程票价单位:元如下:

四惠

3

3

3

3

4

4

4

5

5

5

5

5

四惠东

3

3

3

4

4

4

5

5

5

5

5

高碑店

3

span>3

3

4

4

4

4

5

5

5

传媒大学

3

3

3

4

4

4

4

5

5

双桥

3

3

3

4

4

4

4

4

管庄

3

3

3

3

4

4

4

八里桥

3

3

3

3

4

4

通州北苑

3

3

3

3

3

果园

3

3

3

3

九棵树

3

3

3

梨园

3

3

临河里

3

土桥

四惠

四惠东

高碑店

传媒大学

双桥

管庄

八里桥

通州北苑

果园

九棵树

梨园

临河里

土桥

113座车站中任选两个不同的车站,求两站间票价为5元的概率;

2在土桥出站口随机调查了n名下车的乘客,将在八通线各站上车情况统计如下表:

上车站点

通州北苑果园九棵树

梨园临河里

双桥管庄八里桥

四惠四惠东高碑店

传媒大学

频率

a

b

人数

c

15

25

abcn的值,并计算这n名乘客乘车平均消费金额;

3某人从四惠站上车乘坐八通线到土桥站,中途任选一站出站一次,之后再从该站乘车若想两次乘车花费总金额最少,可以选择中途哪站下车?写出一个即可

【答案】(1);(24.3;(3)见解析

【解析】

记两站间票价5元为事件在13座车站中任选两个不同的车站,基本事件总数为个,事件A中基本事件数为15个由此能求出两站间票价为5元的概率.

2由表格数据知,从而,由此能求出abcn的值,并能求出这n名乘客乘车平均消费金额.

3双桥,通州北苑写出一个即可

记两站间票价5元为事件A

在13座车站中任选两个不同的车站,基本事件总数为个,

事件A中基本事件数为15个.

所以两站间票价为5元的概率

2由表格数据知

所以,即

所以

n名乘客乘车平均消费金额为

3双桥,通州北苑写出一个即可

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等比数列满足:

1)求数列的通项公式;

2)是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题:方程表示焦点在轴上的双曲线:命题:若存在,使得成立.

1)如果命题是真命题,求实数的取值范围;

2)如果为假命题,为真命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将编号为1、2、3、4的四个小球随机的放入编号为1、2、3、4的四个纸箱中,每个纸箱有且只有一个小球,称此为一轮“放球”.设一轮“放球”后编号为的纸箱放入的小球编号为,定义吻合度误差为

(1) 写出吻合度误差的可能值集合;

(2) 假设等可能地为1,2,3,4的各种排列,求吻合度误差的分布列;

(3)某人连续进行了四轮“放球”,若都满足,试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮“放球”相互独立);

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点的动直线与圆相交于两点,中点,与直线为常数)相交于点.

1)求证:当垂直时,必过圆心

2)当时,求直线的方程;

3)当直线的倾斜角变化时,探索的值是否为常数?若是,求出该常数;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

已知曲线的参数方程为为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求曲线的直角坐标方程及曲线上的动点到坐标原点的距离的最大值;

(Ⅱ)若曲线与曲线相交于两点,且与轴相交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应绿色出行,某市在推出“共享单车”后,又推出“新能源租赁汽车”.每次租车收费的标准由两部分组成:里程计费:1元/公里;时间计费:元/分.已知陈先生的家离上班公司公里,每天上、下班租用该款汽车各一次.一次路上开车所用的时间记为(分),现统计了50次路上开车所用时间,在各时间段内频数分布情况如下表所示

将各时间段发生的频率视为概率,一次路上开车所用的时间视为用车时间,范围为分.

(1)估计陈先生一次租用新能源租赁汽车所用的时间不低于分钟的概率;

(2)若公司每月发放元的交通补助费用,请估计是否足够让陈先生一个月上下班租用新能源租赁汽车(每月按天计算),并说明理由.(同一时段,用该区间的中点值作代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,e是自然对数的底,

(1)讨论的单调性;

(2)若是函数的零点,的导函数,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C的参数方程为:为参数,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,射线l的极坐标方程为

将圆C的参数方程化为极坐标方程;

设点A的直角坐标为,射线l与圆C交于点不同于点,求面积的最大值.

查看答案和解析>>

同步练习册答案