精英家教网 > 高中数学 > 题目详情
在直线l:3x-y-1=0上存在一点P,使得:P点到点A(4,1)和点B(3,4)的距离之和最小.求此时的距离之和.
考点:点到直线的距离公式
专题:直线与圆
分析:设点B(3,4)关于直线l:3x-y-1=0的对称点为B′(a,b),可得
b-4
a-3
×3=-1
a+3
2
-
b+4
2
-1=0
,解得a,b,则|PA|+|PB|取得最小值=|AB′|.
解答: 解:设点B(3,4)关于直线l:3x-y-1=0的对称点为B′(a,b),
b-4
a-3
×3=-1
a+3
2
-
b+4
2
-1=0

解得a=
3
5
,b=
24
5
,∴B′(
3
5
24
5
)

∴|PA|+|PB|取得最小值=|AB′|=
(4-
3
5
)2+(1-
24
5
)2
=
26
点评:本题考查了垂直平分线的性质、中点坐标公式、相互垂直的直线斜率之间的关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=({1,
3
),
b
=(3,m),若向量
a
b
的夹角为
π
2
,则实数m的值为(  )
A、2
3
B、
3
C、0
D、-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2ax+2,x∈[-5,5].
(1)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数;
(2)若a≥1,用g(a)表示函数y=f(x)的最小值,求g(a)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是等差数列,{bn}是各项为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求通项公式{an}和{bn};
(2)若cn=
an
bn
,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设n∈N*,an=5n+2×3n-1+1
(1)当n=1,2,3,4时,计算an的值,你对{an}值有何猜想?
(2)请用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,且
x-y≤0
x≥0
x-2y+2≥0
,目标凼数
x
a
+
y
b
的最大值为2,则a+b(  )
A、有最大值4
B、有最大值2
2
C、有最小值4
D、有最小值2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x-
π
3
)的图象为C,下面结论中正确的是(  )
A、函数f(x)的最小正周期是2π
B、图象C关于点(
π
6
,0)对称
C、图象C可由函数g(x)=sin2x的图象向右平移
π
3
个单位得到
D、函数f(x)在区间(-
π
12
π
2
)上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:

“a>0,b>0”是“
b
a
+
a
b
≥2”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

与双曲线
x2
2
-y2=1有相同的渐近线,且过点(2,2)的双曲线的标准方程是
 

查看答案和解析>>

同步练习册答案