精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若方程有两个小于2的不等实根,求实数a的取值范围;

(2)若不等式对任意恒成立,求实数a的取值范围;

(3)若函数在[0,2]上的最大值为4,求实数a的值.

【答案】(1)(2)(3)

【解析】试题分析:(1)根据二次函数的图象与性质得到关于的不等式组,解出即可;(2)问题转化为的任意,根据,求出的取值范围即可;(3)求出函数的对称轴,通过讨论的范围结合二次函数的性质,求出的范围即可.

试题解析:(1)方程有两个小于2的不等实根

;

(2)由对任意恒成立,则

;

(3)函数的对称轴为x=a,则

a<1时,函数在[0,2]上的最大值为

,符合条件;

a≥1时,函数在[0,2]上的最大值为

,符合条件;

所以,所求实数a的值为

【方法点晴】本题主要考查不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数恒成立(可)或恒成立(即可);② 数形结合( 图象在 上方即可);③ 讨论最值恒成立;④一元二次不等式任意恒成立可用判别式小于零解答.本题(2)是利用方法④ 求得的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上是减函数,求实数的取值范围;

(2)令,是否存在实数,当是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由.

(3)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 过点,离心率为分别为左右焦点.

1)求椭圆的标准方程;

2)若上存在两个点,椭圆上有两个点满足三点共线,三点共线,且,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1若函数处有极值,求函数的最大值;

2①是否存在实数,使得关于的不等式上恒成立?若存在,求出的取值范围;若不存在,说明理由;

②证明:不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国的高铁技术发展迅速,铁道部门计划在两城市之间开通高速列车,假设列车在试运行期间,每天在两个时间段内各发一趟由城开往城的列车(两车发车情况互不影响),城发车时间及概率如下表所示:

发车

时间

概率

若甲、乙两位旅客打算从城到城,他们到达火车站的时间分别是周六的和周日的(只考虑候车时间,不考虑其他因素).

(1)设乙候车所需时间为随机变量(单位:分钟),求的分布列和数学期望

(2)求甲、乙两人候车时间相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点为平面上的动点,且过点的垂线,垂足为,满足:

()求动点的轨迹的方程;

()在轨迹上求一点,使得到直线的距离最短,并求出最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形中,分别在上,且,沿将四边形折成四边形,使点在平面上的射影在直线上,且.

(1)求证:平面

(2)求到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过抛物线一点作两条直线分别交抛物线于斜率存在且倾斜角互补时

值;

直线上的截距时,面积最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题实数满足其中,命题实数满足

1,且为真,求实数的取值范围;

2的充分不必要条件,求实数的取值范围

查看答案和解析>>

同步练习册答案