精英家教网 > 高中数学 > 题目详情
已知不等式x2-2x-3<0的整数解由小到大构成数列{an}前三项,若数列{an+2a2}的前n项和为Sn,则Sn=______.
∵x2-2x-3<0,
∴-1<x<3,
∵不等式x2-2x-3<0的整数解由小到大构成数列{an}前三项,
∴a1=0,a2=1,a3=2,
∴an=0+(n-1)×1=n-1,
∴an+2a2=(n-1)+21=n+1,
∴数列{an+2a2}的前n项和Sn=(1+2+3+…+n)+n=
n(n+1)
2
+n=
n2+3n
2

故答案为:
n2+3n
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设数满足:.
(1)求证:数列是等比数列;
(2)若,且对任意的正整数,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在面积为1的正△A1B1C1内作正△A2B2C2,使
A1A2
=2
A2B1
B1B2
=2
B2C1
C1C2
=2
C2A1
,依此类推,在正△A2B2C2内再作正△A3B3C3,….记正△AiBiCi的面积为ai(i=1,2,…,n),则a1+a2+…+an=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设正项等比数列{an}的前n项和为Sn,且a3=4,S2=3.
(1)求数列{an}的通项公式;
(2)令bn=(2n-1)an(n∈N*),求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足:a2•a3=45,a1+a4=14.
(1)求数列{an}的通项公式;
(2)令bn=
2Sn
2n-1
,f(n)=
bn
(n+25)•bn+1
(n∈N*),求f(n)的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设命题p:方程x2+mx+1=0有实根,命题q:数列{
1
n(n+1)
}
的前n项和为Sn,对?n∈N*恒有m≤Sn,若p或q为真,p且q为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知n次多项式Sn(x)=(1+2x)(1+4x)(1+8x)…(1+2nx),其中n是正整数.记Sn(x)的展开式中x的系数是an,x2的系数是bn
(Ⅰ)求an
(Ⅱ)证明:bn+1-bn=4n+1-2n+2
(Ⅲ)是否存在等比数列{cn}和正数c,使得bn=(cn-c)(cn+1-c)对任意正整数n成立?若存在,求出通项cn和正数c;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(理)在数列{an}中,a1=6,且对任意大于1的正整数n,点(
an
an-1
)在直线x-y=
6
上,则数列{
an
n3(n+1)
}的前n项和Sn=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

项数为n的数列a1,a2,a3,…,an的前k项和为Sk(k=1,2,3,…,n),定义
S1+S2+…+Sn
n
为该项数列的“凯森和”,如果项数为99项的数列a1,a2,a3,…,a99的“凯森和”为1000,那么项数为100的数列100,a1,a2,a3,…,a99的“凯森和”为(  )
A.991B.1001C.1090D.1100

查看答案和解析>>

同步练习册答案