精英家教网 > 高中数学 > 题目详情

【题目】如图,正三棱柱 中, 的中点.

(1)求证:平面
(2)若 ,求点 到平面 的距离.

【答案】
(1)证明:∵ 是正三棱柱,

平面 ,又 平面 ,∴ .∵ 是正三角形, 中点,

,又 平面 平面

平面

平面

∴平面 ⊥平面


(2)解 : 正三棱柱 中, ,因为 中点,

.

在直角 中,

平面

平面 ,∴

.

设点 到面 的距离为

,∴

.


【解析】(1)由题意结合正三棱柱的性质可知A A1 ⊥ 平面 A B C进而得到 B E ⊥ A A1,由 Δ A B C 是正三角形 E 是 A C 中点,可得B E ⊥ A C 再由线面垂直的判定定理可得出B E ⊥ 平面 A C C1 A1,进而得到面面垂直。(2)根据题意可知点A到平面BEC1的距离即点C到平面BEC1的距离,过点C作出,则可证CH垂直于平面BEC1,故CH为点 C到平面 B E C1的距离即为点 A 到平面 B E C1的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AC=2 ,AA1= ,AB=2,点D在棱B1C1上,且B1C1=4B1D (Ⅰ)求证:BD⊥A1C
(Ⅱ)求二面角B﹣A1D﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一房产商竞标得一块扇形OPQ地皮,其圆心角∠POQ= ,半径为R=200m,房产商欲在此地皮上修建一栋平面图为矩形的商住楼,为使得地皮的使用率最大,准备了两种设计方案如图,方案一:矩形ABCD的一边AB在半径OP上,C在圆弧上,D在半径OQ;方案二:矩形EFGH的顶点在圆弧上,顶点G,H分别在两条半径上.请你通过计算,为房产商提供决策建议.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有(
A.a>b>c
B.b>c>a
C.c>a>b
D.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三条不重合的直线 和两个不重合的平面 ,下列命题正确的是( )
A.若 ,则
B.若 ,且 ,则
C.若 ,则
D.若 ,且 ,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角梯形PBCD中, ,A为PD的中点,如图.将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,且 ,如图.
(Ⅰ)求证:SA⊥平面ABCD;
(Ⅱ)求二面角E﹣AC﹣D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠BAD=60°,线段AD,BD的中点分别为E,F.现将△ABD沿对角线BD翻折,则异面直线BE与CF所成角的取值范围是(

A.(
B.( ]
C.( ]
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= 的定义域为[0,2],则函数g(x)= 的定义域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为

查看答案和解析>>

同步练习册答案