【题目】设函数, .
(1)讨论的单调性;
(2)当时,记的最小值为,证明: .
【答案】(1)见解析;(2)见解析.
【解析】试题分析:(1)函数的定义域为,对函数求导得,对实数分分两种情况讨论,得出单调性;(2)由(1)知, , , ,所以单调递减,又, ,所以存在,使得,当时, , 单调递增;当时, , 单调递减;所以,再证明出。
试题解析(1)的定义域为,
,
当时, , 在上单调递增;
当时,当, , 单调递减;
当, , 单调递增;
综上,当时, 在上单调递增;
当时, 在上单调递减,在上单调递增.
(2)由(1)知, ,
即.
解法一: , ,
∴单调递减,
又, ,所以存在,使得,
∴当时, , 单调递增;
当时, , 单调递减;
∴ ,又,即, ,
∴ ,令,则在上单调递增,
又,所以,∴.
解法二:要证,即证,即证: ,
令,则只需证,
,
当时, , 单调递减;
当时, , 单调递增;
所以 ,
所以,即.
科目:高中数学 来源: 题型:
【题目】抢“微信红包”已经成为中国百姓欢度春节时非常喜爱的一项活动.小明收集班内20名同学今年春节期间抢到红包金额(元)如下(四舍五入取整数):
102 52 41 121 72
162 50 22 158 46
43 136 95 192 59
99 22 68 98 79
对这20个数据进行分组,各组的频数如下:
(Ⅰ)写出m,n的值,并回答这20名同学抢到的红包金额的中位数落在哪个组别;
(Ⅱ)记C组红包金额的平均数与方差分别为、,E组红包金额的平均数与方差分别为、,试分别比较与、与的大小;(只需写出结论)
(Ⅲ)从A,E两组所有数据中任取2个,求这2个数据差的绝对值大于100的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,侧棱底面, 为棱中点. , , .
(I)求证: 平面.
(II)求证: 平面.
(III)在棱的上是否存在点,使得平面平面?如果存在,求此时的值;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成小块地,在总共小块地中.随机选小块地种植品种甲,另外小块地种植品种乙.
()假设,求第一大块地都种植品种甲的概率.
()试验时每大块地分成小块.即,试验结束后得到品种甲和品种乙在各个小块地上的每公顷产量(单位)如下表:
品种甲 | |||||
品种乙 |
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数g(x)=Acos(ωx+φ)+B的部分图象如图所示,将函数g(x)的图象保持纵坐标不变,横坐标向右平移个单位长度后得到函数f(x)的图象.求:
(1)函数f(x)在上的值域;
(2)使f(x)≥2成立的x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元), 表示购机的同时购买的易损零件数.
(Ⅰ)若=19,求y与x的函数解析式;
(Ⅱ)若要求“需更换的易损零件数不大于”的频率不小于0.5,求的最小值;
(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com