精英家教网 > 高中数学 > 题目详情

关于x的不等式x2+4x-2a≤0和x2-ax+a+3≤0的解集分别是A、B.下列说法中不正确的是

[  ]

A.不存在常数a,使得A、B同时为

B.至少存在一个常数a,使得A、B都是仅含有一个元素的集合;

C.当A、B都是仅含有一个元素的集合时,总有A=B;

D.当A、B都是仅含有一个元素的集合时,总有A≠B.

答案:C
解析:

逐项验证.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的不等式x2-(3a+1)x+2a(a+1)<0的解集是A,函数f(x)=
1
2-x
x+1
的定义域是B,若A⊆B.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式x2≤5x-4解集A,关于x的不等式x2-(a+2)x+2a≤0(a∈R)解集为M.
(1)求集合A;
(2)若 M⊆A,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的不等式x2-(a+1)x+a<0的解集中恰有3个整数解,则a的取值范围是
[-3,-2)∪(4,5]
[-3,-2)∪(4,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={ t|t∈Z,关于x的不等式x2≤2-|x-t|至少有一个负数解 },则集合A中的元素之和等于
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•重庆)关于x的不等式x2-2ax-8a2<0(a>0)的解集为(x1,x2),且:x2-x1=15,则a=(  )

查看答案和解析>>

同步练习册答案