精英家教网 > 高中数学 > 题目详情
1.如图所示,正方形BCDE的边长为a,已知$AB=\sqrt{3}BC$,将△ABE沿BE边折起,折起后A点在平面BCDE上的射影为D点,则翻折后的几何体中有如下描述:
①AB与DE所成角的正切值为$\sqrt{2}$;
②AB∥CE;
③${V_{B-ACE}}=\frac{1}{12}{a^3}$;
④平面ABC⊥平面ADC.其中正确的命题序号为①④.

分析 在①中,由BC∥DE,知∠ABC(或其补角)为AB与DE所成角,由此能求出AB与DE所成角的正切值为$\sqrt{2}$;在②中,由翻折后的图形知AB与CE是异面直线;在③中,VB-ACE=$\frac{1}{6}{a}^{3}$;在④中,由AD⊥平面BCDE,知AD⊥BC,又BC⊥CD,由此推导出平面ABC⊥平面ADC.

解答 解:∵正方形BCDE的边长为a,已知$AB=\sqrt{3}BC$,将△ABE沿BE边折起,
折起后A点在平面BCDE上的射影为D点,
∴$AB=\sqrt{3}BC$=$\sqrt{3}a$,AE=$\sqrt{2}a$,AD⊥平面BCDE,AD=a,AC=$\sqrt{2}a$,
在①中,∵BC∥DE,∴∠ABC(或其补角)为AB与DE所成角,
∵AB=$\sqrt{3}a$,BC=a,AC=$\sqrt{2}a$,∴BC⊥AC,
∴tan∠ABC=$\sqrt{2}$,∴AB与DE所成角的正切值为$\sqrt{2}$,故①正确;
在②中,由翻折后的图形知AB与CE是异面直线,故②错误;
在③中,${V}_{B_ACE}=\frac{1}{3}{S}_{△BCE}×AD=\frac{1}{3}×\frac{1}{2}{a}^{3}$=$\frac{1}{6}{a}^{3}$,故③错误;
在④中,∵AD⊥平面BCDE,BC?平面ABC,
∴AD⊥BC,又BC⊥CD,AD∩CD=D,
∴BC?平面ADC,又BC?平面ABC,
∴平面ABC⊥平面ADC,故④正确.
故答案为:①④.

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴交于点D,且有|FA|=|FD|,当点A的横坐标为3时,△ADF为正三角形
(1)求C的方程
(2)延长AF交抛物线于点E,过点E作抛物线的切线l1,求证:l1∥l.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.双曲线y2-2x2=8的渐近线方程为$y=±\sqrt{2}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)是定义在R上的最小正周期为$\frac{7π}{6}$的函数,且在$[-\frac{5π}{6},\frac{π}{3})$上$f(x)=\left\{\begin{array}{l}sinx,x∈[-\frac{5π}{6},0)\\ cosx+a,x∈[0,\frac{π}{3}]\end{array}\right.$,则a=-1,$f(-\frac{16π}{3})$=$-\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B等于(  )
A.(0,2)B.(2,3)C.(-1,3)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.2016年9 月4日至5日在中国杭州召开了G20峰会,会后某10国集团领导人站成前排3人后排7人准备请摄影师给他们拍照,现摄影师打算从后排7人中任意抽2人调整到前排,使每排各5人.若调整过程中另外8人的前后左右相对顺序不变,则不同调整方法的总数是(  )
A.$C_7^2A_3^2$B.$C_7^2A_5^5$C.$C_7^2A_5^2$D.$C_7^2A_4^2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设p:实数x满足x2+4ax+3a2<0,其中a≠0,命题q:实数x满足{$\begin{array}{l}{x^2}-6x-72≤0\\{x^2}+x-6>0\end{array}$.
(1)若a=-1,且p∨q为真,求实数x的取值范围;
(2)若¬p是¬q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.把双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1的实轴变虚轴,虚轴变实轴,那么所得的双曲线方程为(  )
A.-$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1B.-$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a=($\frac{1}{3}$)${\;}^{\frac{4}{5}}$,b=($\frac{1}{4}$)${\;}^{\frac{4}{5}}$,c=($\frac{1}{3}$)${\;}^{\frac{3}{5}}$,则(  )
A.a<b<cB.c<a<bC.b<c<aD.b<a<c

查看答案和解析>>

同步练习册答案