【题目】如图是函数的导函数的图象,给出下列命题:
①-2是函数的极值点;
②1是函数的极值点;
③的图象在处切线的斜率小于零;
④函数在区间上单调递增.
则正确命题的序号是( )
A. ①③ B. ②④ C. ②③ D. ①④
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知倾斜角为的直线经过点.以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为
(1)写出曲线的普通方程;
(2)若直线与曲线有两个不同的交点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
储蓄存款y (千亿元) | 5 | 6 | 7 | 8 | 10 |
为了研究计算的方便,工作人员将上表的数据进行了处理,得到下表2:
时间代号t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(1)求z关于t的线性回归方程;
(2)通过(1)中的方程,求出y关于x的回归方程;
(3)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点列{An}、{Bn}分别在锐角两边(不在锐角顶点),且|AnAn+1|=|An+1An+2|,An≠An+2 , |BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1 , n∈N*(P≠Q表示点P与Q不重合),若dn=|AnBn|,Sn为△AnBnBn+1的面积,则( )
A.{dn}是等差数列
B.{Sn}是等差数列
C.{d }是等差数列
D.{S }是等差数列
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}的前n项和记为Sn且满足Sn=2an﹣1,n∈N*;
(1)求数列{an}的通项公式;
(2)设Tn=a1a2﹣a2a3+a3a4﹣a4a5+…+(﹣1)n+1anan+1 , 求{Tn}的通项公式;
(3)设有m项的数列{bn}是连续的正整数数列,并且满足:lg2+lg(1+ )+lg(1+ )+…+lg(1+ )=lg(log2am).
问数列{bn}最多有几项?并求出这些项的和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆右焦点,离心率为,过作两条互相垂直的弦,设中点分别为.
(1)求椭圆的方程;
(2) 证明:直线必过定点,并求出此定点坐标;
(3) 若弦的斜率均存在,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形中,,,,将四边形沿对角线折成四面.使平面平面,则下列结论正确的是( ).
A. B.
C. 与平面所成的角为 D. 四面体的体积为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com