精英家教网 > 高中数学 > 题目详情
8.已知偶函数f(x)在[0,+∞)上是增函数,且f(1)=0,则满足f(log${\;}_{\frac{1}{2}}$x)>0的x的取值范围是(  )
A.(0,+∞)B.(0,$\frac{1}{2}$)∪(2,+∞)C.(0,$\frac{1}{2}$)D.(0,$\frac{1}{2}$)∪(1,2)

分析 根据函数奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.

解答 解:∵f(x)是R上的偶函数,且在[0,+∞)上是增函数,又f(1)=0,
∴不等式f(log${\;}_{\frac{1}{2}}$x)>0等价为f(|log${\;}_{\frac{1}{2}}$x|)>f(1),
即|log${\;}_{\frac{1}{2}}$x|>1,
则log${\;}_{\frac{1}{2}}$x>1或log${\;}_{\frac{1}{2}}$x<-1,
解得0<x<2或x$>\frac{1}{2}$,
故选:B.

点评 本题主要考查不等式的解法,根据函数奇偶性和单调性之间的关系将不等式进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x+$\frac{k}{|x|}$-1(x≠0),k∈R.
(1)当k=3时,试判断f(x)在(-∞,0)上的单调性,并用定义证明;
(2)若对任意x∈R,不等式f(2x)>0恒成立,求实数k的取值范围;
(3)当k∈R时,试讨论f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=$\frac{lg(x+1)}{x}$的定义域为(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的函数f(x)满足:①f(x)+f(2-x)=0;②f(x-2)=f(-x),③在[-1,1]上表达式为f(x)=$\sqrt{1-{x}^{2}}$,则函数f(x)与函数g(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{1-x,x>0}\end{array}\right.$的图象在区间[-3,3]上的交点个数为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a=20.3,b=log0.23,c=log32,则a,b,c的大小关系是(  )
A.a<b<cB.c<b<aC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一个半径是R的扇形,其周长为4R,则该扇形圆心角的弧度数为(  )
A.1B.2C.πD.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.记[x]表示不超过x的最大整数,如[1.2]=1,[0.5]=0,则方程[x]-x=lnx的实数根的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在${({4{x^2}-\frac{1}{x}})^6}$的展开式中,x-3的系数为-24.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合 A={-2,-1,0,2,3},B={y|y=x2-1,x∈A},则A∩B中元素的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案