精英家教网 > 高中数学 > 题目详情
已知f(x)=lg
1
2
x-1,且f′(a)=2,则实数a=
 
考点:导数的运算
专题:计算题
分析:运用导数公式求解.
解答: 解:∵f(x)=lg
1
2
x-1,
∴f′(x)=
1
xln10

∵f′(a)=2,∴
1
aln10
=2
即a=
1
2ln10

故答案为:
1
2ln10
点评:本题考察了导数的运算,熟记公式,仔细运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列-10,-8,-6,-4的通项公式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)对于所有的正实数x均有f(3x)=3f(x),且f(x)=1-|x-2|(1≤x≤3),则使得f(x)=f(2014)的最小的正实数x的值为(  )
A、173B、416
C、556D、589

查看答案和解析>>

科目:高中数学 来源: 题型:

从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.
(Ⅰ)求第七组的频率;
(Ⅱ)估计该校的800名男生的身高的中位数以及身高在180cm以上(含180cm)的人数;
(Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x,y,事件E={|x-y|≤5},事件F={|x-y|>15},求P(E∪F).

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)的定义域为[-1,2],则f(|x|)的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx+c,若f(0)=0,且f(x+1)=f(x)+x+1,则f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义“正对数”:ln+x=
00<x<1
lnxx≥1
,现有四个命题:
①若a>0,b>0,则ln+(ab)=bln+a
②若a>0,b>0,则ln+(ab)=ln+a+ln+b
③若a>0,b>0,则ln+(
a
b
)≥ln+a-ln+
b
④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2
其中的真命题有:
 
.(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2.以BD的中点O为球心、BD为直径的球面交PD于点M.
(1)求证:PD⊥平面ABM;
(2)求直线PC与平面ABM所成的角的正切.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=log310,b=log37,则3a-b=
 

查看答案和解析>>

同步练习册答案