平面直角坐标系xOy内有向量=(1,7),=(5,1),=(2,1),点Q为直线OP上一动点.
(1)当·取得最小值时,求坐标;
(2)当点Q满足(1)中条件时,求cos∠AQB的值.
(1)当y=2时,·有最小值-8,此时=(4,2).(2)-.
解析试题分析:(1)设=(x,y),∴点Q在直线上,
∴向量与共线,又=(2,1),
∴x-2y=0,即x=2y,∴=(2y,y),
又=-=(1-2y,7-y),=(5-2y,1-y)
∴·=(1-2y)·(5-2y)+(7-y)·(1-y)=5y2-20y+12=5(y-2)2-8,
故当y=2时,·有最小值-8,此时=(4,2).
(2)由(1)知=(-3,5),=(1,-1),·=-8,||=,=.
∴cos∠AQB==-.
考点:平面向量的线性运算,平面向量的数量积,平面向量的坐标计算,二次函数的图象和性质。
点评:中档题,本题综合考查平面向量的线性运算,平面向量的数量积,平面向量的坐标计算,二次函数的图象和性质,对学生的计算能力有较高要求。向量的夹角公式。平面向量模的计算,往往“化模为方”,转化成向量的运算。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com