精英家教网 > 高中数学 > 题目详情

平面直角坐标系xOy内有向量=(1,7),=(5,1),=(2,1),点Q为直线OP上一动点.
(1)当·取得最小值时,求坐标;
(2)当点Q满足(1)中条件时,求cos∠AQB的值.

(1)当y=2时,·有最小值-8,此时=(4,2).(2)-.

解析试题分析:(1)设=(x,y),∴点Q在直线上,
∴向量共线,又=(2,1),
∴x-2y=0,即x=2y,∴=(2y,y),
=(1-2y,7-y),=(5-2y,1-y)
·=(1-2y)·(5-2y)+(7-y)·(1-y)=5y2-20y+12=5(y-2)2-8,
故当y=2时,·有最小值-8,此时=(4,2).
(2)由(1)知=(-3,5),=(1,-1),·=-8,||=.
∴cos∠AQB==-.
考点:平面向量的线性运算,平面向量的数量积,平面向量的坐标计算,二次函数的图象和性质。
点评:中档题,本题综合考查平面向量的线性运算,平面向量的数量积,平面向量的坐标计算,二次函数的图象和性质,对学生的计算能力有较高要求。向量的夹角公式。平面向量模的计算,往往“化模为方”,转化成向量的运算。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知向量,其中
试计算的值;
求向量的夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知点
(1)若,且,求角的值;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若三点共线,求实数的值;
(2)证明:对任意实数,恒有 成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是同一平面内的三个向量,其中
(1)若,且,求:的坐标
(2)若,且垂直,求的夹角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量, ,  
(1)若,求向量的夹角
(2)当时,求函数的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,的夹角为60o, , ,当实数为何值时,⑴   ⑵

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设向量满足
(1)求夹角的大小;   (2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为两个不共线向量。
(1)试确定实数k,使k+k共线;
(2),求使三个向量的终点在同一条直线上的的值。

查看答案和解析>>

同步练习册答案