精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={x|ax2+2x+1=0aR}

1)若A只有一个元素,试求a的值,并求出这个元素;

2)若A是空集,求a的取值范围;

3)若A中至多有一个元素,求a的取值范围.

【答案】(1)详见解析;(2);(3)

【解析】

1)根据方程为一次方程与二次方程分类讨论,对应求解得结果,(2)根据方程无解条件列不等式,解得结果,(3A中至多只有一个元素就是A为空集,或有且只有一个元素,所以求(1)(2)结果的并集即可.

1)若A中只有一个元素,则方程ax2+2x+1=0有且只有一个实根,

a=0时,方程为一元一次方程,满足条件,此时x=-

a≠0,此时=4-4a=0,解得:a=1,此时x=-1

2)若A是空集,

则方程ax2+2x+1=0无解,

此时=4-4a0,解得:a1.

3)若A中至多只有一个元素,

A为空集,或有且只有一个元素,

由(1),(2)得满足条件的a的取值范围是:a=0a≥1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinx,1), =( Acosx, cos2x)(A>0),函数f(x)= 的最大值为6.
(1)求A;
(2)将函数y=f(x)的图象像左平移 个单位,再将所得图象各点的横坐标缩短为原来的 倍,纵坐标不变,得到函数y=g(x)的图象.求g(x)在[0, ]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD, ,PA=2,E是PC上的一点,PE=2EC.

(1)证明:PC⊥平面BED;
(2)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知有6名男医生,4名女医生.

(1)选3名男医生,2名女医生,让这5名医生到5个不同地区去巡回医疗,一个地区去一名教师,共有多少种分派方法?

(2)把10名医生分成两组,每组5人且每组都要有女医生,共有多少种不同的分法?若将这两组医生分派到两地去,又有多少种分派方法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)(x∈R)满足f(﹣x)=f(x),f(x)=f(2﹣x),且当x∈[0,1]时,f(x)=x3 . 又函数g(x)=|xcos(πx)|,则函数h(x)=g(x)﹣f(x)在 上的零点个数为( )
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电视传媒公司为了了解某地区电视观众对某体育节目的收视情况,随机抽取了100名观众进行调查,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面2×2列联表,并据此资料你是否认为“体育迷”与性别有关?

非体育迷

体育迷

合计

10

55

合计


(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X)

P( K2≥k)

0.05

0.01

k

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣5:不等式选讲
已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.
(1)求a的值;
(2)若 恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=﹣ n2+kn(其中k∈N+),且Sn的最大值为8.
(1)确定常数k,求an
(2)求数列 的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】
(1)[选修4﹣1:几何证明选讲]
如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.
求证:∠E=∠C.

(2)[选修4﹣2:矩阵与变换]
已知矩阵A的逆矩阵 ,求矩阵A的特征值.
(3)[选修4﹣4:坐标系与参数方程]
在极坐标中,已知圆C经过点P( ),圆心为直线ρsin(θ﹣ )=﹣ 与极轴的交点,求圆C的极坐标方程.
(4)[选修4﹣5:不等式选讲]
已知实数x,y满足:|x+y|< ,|2x﹣y|< ,求证:|y|<

查看答案和解析>>

同步练习册答案