精英家教网 > 高中数学 > 题目详情
15.已知点A(4,4)在抛物线y2=2px (p>0)上,该抛物线的焦点为F,过点A作该抛物线准线的垂线,垂足为E,则∠EAF的平分线所在的直线方程为(  )
A.2x+y-12=0B.x+2y-12=0C.2x-y-4=0D.x-2y+4=0

分析 先求出抛物线方程,再抛物线的定义可得|AF|=|AE|,所以∠EAF的平分线所在直线就是线段EF的垂直平分线,从而可得结论.

解答 解:∵点A(4,4)在抛物线y2=2px(p>0)上,∴16=8p,∴p=2
∴抛物线的焦点为F(1,0),准线方程为x=-1,E(-1,4)
由抛物线的定义可得|AF|=|AE|,所以∠EAF的平分线所在直线就是线段EF的垂直平分线
∵kEF=-2,
∴∠EAF的平分线所在直线的方程为y-4=$\frac{1}{2}$(x-4),即x-2y+4=0
故选D.

点评 本题考查抛物线的标准方程,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若复数z1=a+2i,a2=2+i(i是虚数单位),且z1z2为纯虚数,则实数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知实数x,y满足$\left\{\begin{array}{l}x-2y+4≥0\\ 2x+y-2≥0\\ 3x-y-4≤0\end{array}\right.$,则z=x2+y2的最小值为(  )
A.1B.$\frac{{2\sqrt{5}}}{5}$C.$\frac{4}{5}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知F为双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左焦点,直线l经过点F,若点A(a,0),B(0,b)关于直线l对称,则双曲线C的离心率为(  )
A.$\frac{{\sqrt{3}+1}}{2}$B.$\frac{{\sqrt{2}+1}}{2}$C.$\sqrt{3}+1$D.$\sqrt{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点F(1,0),动点M,N分别在x轴,y轴上运动,MN⊥NF,Q为平面上一点,$\overrightarrow{NQ}+\overrightarrow{NF}=\overrightarrow 0$,过点Q作QP平行于x轴交MN的延长线于点P.
(Ⅰ)求点P的轨迹曲线E的方程;
(Ⅱ)过Q点作x轴的垂线l,平行于x轴的两条直线l1,l2分别交曲线E于A,B两点(直线AB不过F),交l于C,D两点.若线段AB中点的轨迹方程为y2=2x-4,求△CDF与△ABF的面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(I)已知a+b+c=1,证明(a+1)2+(b+1)2+(c+1)2≥$\frac{16}{3}$;
(Ⅱ)若对任总实数x,不等式|x-a|+|2x-1|≥2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设向量$\overrightarrow{a}$=(1,2m),$\overrightarrow{b}$=(m+1,1),$\overrightarrow{c}$=(m,3),若($\overrightarrow{a}$+$\overrightarrow{c}$)⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$|=$\sqrt{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,三棱锥P-ABC中,PA⊥平面ABC,∠ABC=90°,PA=AC=2,D是PA的中点,E是CD的中点,点F在PB上,$\overrightarrow{PF}$=3$\overrightarrow{FB}$.
(1)证明:EF∥平面ABC;
(2)若∠BAC=60°,求二面角B-CD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若$P(ξ=K)=\frac{1}{2^K}$,则$\frac{n!}{{3!({n-3})!}}$的值为(  )
A.1B.20C.35D.7

查看答案和解析>>

同步练习册答案