精英家教网 > 高中数学 > 题目详情
10.背写课本中的部分公式
(1)基本性质:①loga1=0;②logaa=1;③a${\;}^{lo{g}_{a}N}$=N.
1、对数的运算
性质:如果a>0,且a≠1,M>0,N>0,那么:
loga(M•N)=logaM+logaN;
loga$\frac{M}{N}$=logaM-logaN;
logaMn=nlogaM(n∈R).
2、换底公式:logab=$\frac{{log}_{c}b}{{log}_{c}a}$(a>0且a≠1;c>0且c≠1;b>0)
换底公式的变形公式:①logab•logba=1;②log${\;}_{\frac{1}{a}}$b=-logab;③log${\;}_{{a}^{n}}$bm=$\frac{m}{n}{log}_{a}b$.

分析 直接利用对数的运算法则,写出结果即可.

解答 解:(1)基本性质:①loga1=0;②logaa=1;③a${\;}^{lo{g}_{a}N}$=N.
1、对数的运算
性质:如果a>0,且a≠1,M>0,N>0,那么:
loga(M•N)=logaM+logaN;
loga$\frac{M}{N}$=logaM-logaN;
logaMn=nlogaM(n∈R).
2、换底公式:logab=$\frac{{log}_{c}b}{{log}_{c}a}$(a>0且a≠1;c>0且c≠1;b>0)
换底公式的变形公式:①logab•logba=1;②log${\;}_{\frac{1}{a}}$b=-logab;③log${\;}_{{a}^{n}}$bm=$\frac{m}{n}{log}_{a}b$,
故答案为:(1):0;1;N.
1:logaM+logaN;logaM-logaN;nlogaM.
2:$\frac{{log}_{c}b}{{log}_{c}a}$;1;-logab;$\frac{m}{n}{log}_{a}b$.

点评 本题考查对数的基本性质以及运算法则,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知抛物线y=-$\frac{1}{4}$x2的焦点为F,则过F的最短弦长为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若双曲线$\frac{x^2}{64}-\frac{y^2}{36}$=1上一点P到它的左焦点的距离为18,则点P到右焦点的距离为(  )
A.2B.34C.6D.2或34

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.抛物线y2=2px的准线方程是x=-2,则p的值是(  )
A.$-\frac{1}{8}$B.$\frac{1}{8}$C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线过点(2,$\sqrt{3}$),则双曲线的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{7}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若双曲线C与椭圆x2+4y2=64有相同的焦点,它的一条渐近线方程是$x+\sqrt{3}y=0$,求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知x∈R,符号[x]表示不超过x的最大整数,若函数f(x)=$\frac{[x]}{x}$(x>0),则给出以下四个结论正确的是(  )
A.函数f(x)的值域为(0,1]
B.函数f(x)没有零点
C.函数f(x)是(0,+∞)上的减函数
D.函数g(x)=f(x)-a有且仅有3个零点时$\frac{3}{4}$<a≤$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组的频数为12.则 样本容量为150.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=Asin(ωx+φ)(其中A,ω,φ为常数,且A>0,ω>0,-$\frac{π}{2}<ϕ<\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)若f(α)=$\frac{6}{5}$,0<α<$\frac{π}{2}$,求$f(2α+\frac{π}{12})$的值.

查看答案和解析>>

同步练习册答案