分析 直接利用对数的运算法则,写出结果即可.
解答 解:(1)基本性质:①loga1=0;②logaa=1;③a${\;}^{lo{g}_{a}N}$=N.
1、对数的运算
性质:如果a>0,且a≠1,M>0,N>0,那么:
loga(M•N)=logaM+logaN;
loga$\frac{M}{N}$=logaM-logaN;
logaMn=nlogaM(n∈R).
2、换底公式:logab=$\frac{{log}_{c}b}{{log}_{c}a}$(a>0且a≠1;c>0且c≠1;b>0)
换底公式的变形公式:①logab•logba=1;②log${\;}_{\frac{1}{a}}$b=-logab;③log${\;}_{{a}^{n}}$bm=$\frac{m}{n}{log}_{a}b$,
故答案为:(1):0;1;N.
1:logaM+logaN;logaM-logaN;nlogaM.
2:$\frac{{log}_{c}b}{{log}_{c}a}$;1;-logab;$\frac{m}{n}{log}_{a}b$.
点评 本题考查对数的基本性质以及运算法则,是基础题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 34 | C. | 6 | D. | 2或34 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{7}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 函数f(x)的值域为(0,1] | |
B. | 函数f(x)没有零点 | |
C. | 函数f(x)是(0,+∞)上的减函数 | |
D. | 函数g(x)=f(x)-a有且仅有3个零点时$\frac{3}{4}$<a≤$\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com