精英家教网 > 高中数学 > 题目详情
已知函数
(1)若,求函数的单调区间;
(2)若以函数图像上任意一点为切点的切线的斜率恒成立,求实数的最小值.
(1)函数的单调递减区间为,单调递增区间为;(2)实数的最小值为.

试题分析:(1)先求定义域,然后对函数求导,令,求出单调递减区间;,即求出单调递增区间;(2) 由(I)知恒成立可转化为,解得.
试题解析:(1)当时,,定义域为
                    3分
时,,当时, 
∴f(x)的单调递减区间为,单调递增区间为.         5分
(2) 由(1)知,则恒成立,

时,取得最大值,∴,∴.        12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知三次函数为实常数。
(1)若时,求函数的极大、极小值;
(2)设函数,其中的导函数,若的导函数为轴有且仅有一个公共点,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)记函数的最小值为,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3+x-16.
(1)求曲线y=f(x)在点(2,-6)处的切线方程.
(2)如果曲线y=f(x)的某一切线与直线y=-x+3垂直,求切点坐标与切线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3+ax2+bx(a,b∈R).
(1)当a=1时,求函数f(x)的单调区间;
(2)若f(1)=,且函数f(x)在上不存在极值点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个球的体积、表面积分别为VS,若函数Vf(S),f′(S)是f(S)的导函数,则f′(π)=(  )
A.B.C.1D.π

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)=x2-2x-4ln x,则f′(x)>0的解集为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=x3-2x2+3mx∈[0,+∞),若f(x)+5≥0恒成立,则实数m的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=xln xg(x)=x3ax2x+2.
(1)求函数f(x)的单调区间;
(2)对一切x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案