精英家教网 > 高中数学 > 题目详情

【题目】假设某设备的使用年限x(年)和所支出的维修费用y(万元)有如下的统计资料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

试求:(1yx之间的回归方程;

2)当使用年限为10年时,估计维修费用是多少?

【答案】1212.38万元

【解析】1)根据题表中数据作散点图,如图所示:

从散点图可以看出,样本点都集中分布在一条直线附近,因此yx之间具有线性相关关系.利用题中数据得:

23456)=4

2.23.85.56.57.0)=5

2×2.23×3.84×5.55×6.56×7.0112.3

223242526290

所以

线性回归方程为.

2)当x10时,1.23×100.0812.38(万元),即当使用10年时,估计维修费用是12.38万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】x,y 满足约束条件 ,若 z=y﹣ax 取得最大值的最优解不唯一,则实数 a 的值为(
A. 或﹣1
B.2 或
C.2 或1
D.2 或﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex
(Ⅰ)证明:当x∈[0,3]时,
(Ⅱ)证明:当x∈[2,3]时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A是单位圆O和x轴正半轴的交点,P,Q是圆O上两点,O为坐标原点,∠AOP= ,∠AOQ=α,α∈[0, ].
(1)若Q( ),求cos(α﹣ )的值;
(2)设函数f(α)=sinα( ),求f(α)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产一种产品的固定成本(即固定投入)为0.5万元,但每生产一百件这样的产品,需要增加可变成本(即另增加投入)0.25万元. 市场对此产品的年需求量为500件,销售的收入函数为= (单位:万元),其中是产品售出的数量(单位:百件).

(1)该公司这种产品的年产量为百件,生产并销售这种产品所得到的利润为当年产量的函数,求;

(2)当年产量是多少时,工厂所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥S﹣ABC中,SB⊥底面ABC,且SB=AB=2,BC= ,D、E分别是SA、SC的中点.
(Ⅰ)求证:平面ACD⊥平面BCD;
(Ⅱ)求二面角S﹣BD﹣E的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校,在课堂上,李老师请学生画出自行车行进路程s(千米)与行进时间x(秒)的函数图象的示意图,你认为正确的是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,D是A1B1的中点.
(1)求证:A1C∥平面BDC1
(2)若AB⊥AC,且AB=AC= AA1 , 求二面角A﹣BD﹣C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数,函数

定义域为求实数取值范围;

⑵当时,求函数最小值

是否存在非负实数使得函数定义域为值域为若存在求出值;若不存在,则说明理由

查看答案和解析>>

同步练习册答案