精英家教网 > 高中数学 > 题目详情
20.若曲线y=a(x-1)-lnx在x=2处的切线垂直于直线y=-2x+2,则a=(  )
A.4B.3C.2D.1

分析 求出函数的导数,利用x=2处的切线垂直于直线y=-2x+2,列出方程求解即可.

解答 解:由y=a(x-1)-lnx,求导得f′(x)=a-$\frac{1}{x}$,
依题意曲线y=a(x-1)-lnx在x=2处的切线垂直于直线y=-2x+2,
得,a-$\frac{1}{2}=\frac{1}{2}$,即a=1.
故选:D.

点评 本题考查函数的导数的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若直线$\frac{x}{a}$+$\frac{y}{b}$=1通过点M(cosα,sinα),则(  )
A.a2+b2≤1B.a2+b2≥1C.$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$≤1D.$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$≥1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC,点E,F分别是BC,A1C的中点.
(1)求证:EF∥平面A1B1BA;
(2)求证:平面AEA1⊥平面BCB1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知立方体ABCD-A'B'C'D',E,F,G,H分别是棱AD,BB',B'C',DD'中点,从中任取两点确定的直线中,与平面AB'D'平行的有(  )条.
A.0B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若$\frac{cos2α}{sin(α-\frac{π}{4})}$=-$\frac{\sqrt{2}}{2}$,则sin(α+$\frac{π}{4}$)的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}}{4}$D.-$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知两个函数f(x)=log4(a$•{2}^{x}-\frac{4}{3}a$)(a≠0),g(x)=log4(4x+1)-$\frac{1}{2}x$的图象有且只有一个公共点,则实数a的取值范围是{a|a>1或a=-3}..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=-x+ex-m的单调增区间是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F,离心率e=$\frac{1}{2}$,点$D(0\;,\;\sqrt{3})$在椭圆E上.
(Ⅰ) 求椭圆E的方程;
(Ⅱ) 设过点F且不与坐标轴垂直的直线交椭圆E于A,B两点,△DAF的面积为S△DAF,△DBF的面积为S△DBF,且S△DAF:S△DBF=2:1,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.甲、乙两人各进行3次射击,甲、乙每次击中目标的概率分别为$\frac{1}{2}$和$\frac{2}{3}$.
(1)求甲至多击中目标2次的概率;
(2)记乙击中目标的次数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

同步练习册答案