【题目】已知椭圆:的离心率为,右焦点到直线的距离为.
(1)求椭圆的方程;
(2)过点作与坐标轴不垂直的直线与椭圆交于,两点,在轴上是否存在点,使得为正三角形,若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1).(2)在轴上是存在点,坐标为,
【解析】
(1)因为椭圆:的离心率为,可得,右焦点到直线的距离为,故,即可求得答案;
(2)设线段的中点,若是正三角形,且,结合已知,即可求得答案.
(1)椭圆:的离心率为
,可得
故
右焦点到直线的距离为.
①当时,将代入
可得
整理可得:
即
解得:(舍去)或
由,可得,即
根据
可得:
②当时,将代入
可得
整理可得:
方程无解
(2)过点作与坐标轴不垂直的直线
设直线的方程为
联立直线的方程和椭圆方程可得:,消掉
可得:
根据韦达定理可得:
设线段的中点,
则,
是正三角形
且
根据,可得
由可得:
可得:,解得:
设,将其代入
可得
可得
故在轴上是存在点,使得为正三角形,坐标为,
科目:高中数学 来源: 题型:
【题目】已知函数是定义在R上的奇函数,当时,,给出下列命题:
①当时,;
②函数有2个零点;
③的解集为;
④,,都有.
其中真命题的个数为( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的内角A,B,C所对边分别为a、b、c,且2acosC=2b-c.
(1)求角A的大小;
(2)若AB=3,AC边上的中线SD的长为,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为和,由4个点、、和组成了一个高为,面积为的等腰梯形.
(1)求椭圆的方程;
(2)过点的直线和椭圆交于两点、,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】人们随着生活水平的提高,健康意识逐步加强,健身开始走进人们生活,在健身方面投入越来越多,为了调查参与健身的年轻人一年健身的花费情况,研究人员在地区随机抽取了参加健身的青年男性、女性各50名,将其花费统计情况如下表所示:
分组(花费) | 频数 |
6 | |
22 | |
25 | |
35 | |
8 | |
4 |
男性 | 女性 | 合计 | |
健身花费不超过2400元 | 23 | ||
健身花费超过2400元 | 20 | ||
合计 |
(1)完善二联表中的数据;
(2)根据表中的数据情况,判断是否有99%的把握认为健身的花费超过2400元与性别有关;
(3)求这100名被调查者一年健身的平均花费(同一组数据用该区间的中点值代替).
附:
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.01 |
k | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com