精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知抛物线C:的焦点为F,过F的直线交抛物线C于A,B两点.

(1)求线段AF的中点M的轨迹方程;

(2)已知△AOB的面积是△BOF面积的3倍,求直线的方程.

【答案】(1);(2)

【解析】

1)设线段AF的中点的坐标为,即可求得,将它们代入即可得解。

2)设,由△AOB的面积是△BOF面积的3倍可得:直线的斜率存在,且的面积是面积的2倍,即可整理得:,设直线的方程为:,联立直线方程与抛物线方程可得:,结合即可求得:,问题得解。

1)设线段AF的中点的坐标为

由抛物线的方程可得:焦点

由中点坐标公式可得:

即:

在抛物线上,所以

代入上式可得:

整理得:

所以线段AF的中点M的轨迹方程为:

2)依据题意作出图形,如下:

,且的取值一正、一负

因为△AOB的面积是△BOF面积的3倍,所以直线的斜率存在,

的面积是面积的2倍,

即:,整理得:

设直线的方程为:

联立直线与抛物线方程可得:,整理得:.

所以

解得:.

所以直线的方程为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,采集相应数据,对该公司2017年连续六个月的利润进行了统计,并绘制了相应的折线图,如图所示:

1)折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司20181月份的利润;

2)甲公司新研制了一款产品,需要采购一批新型材料,现有采购成本分别为10万元包和12万元包的两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,不同类型的新型材料损坏的时间各不相同,已知生产新型材料的企业乙对两种型号各100件新型材料进行过科学模拟测试,得到两种新型材料使用寿命频数统计如表:

使用寿命

材料类型

1个月

2个月

3个月

4个月

总计

20

35

35

10

100

10

30

40

20

100

经甲公司测算,平均每包新型材料每月可以带来5万元收入,不考虑除采购成本之外的其他成本,假设每包新型材料的使用寿命都是整数月,且以频率作为每包新型材料使用寿命的概率,如果你是甲公司的负责人,以每包新型材料产生利润的期望值为决策依据,你会选择采购哪款新型材料?

参考数据:

参考公式:回归直线方程为,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C:x2=6y与直线l:y=kx+3交于M,N两点.

(1)设M,N到y轴的距离分别为d1,d2,证明:d1d2为定值.

(2)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?若存在,求以线段OP为直径的圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】京剧是我国的国粹,是国家级非物质文化遗产,为纪念著名京剧表演艺术家,京剧艺术大师梅兰芳先生,某电视台《我爱京剧》的一期比赛中,2梅派传人和4位京剧票友(资深业余爱好者)在幕后登台演唱同一曲目《贵妃醉酒》选段,假设6位演员的演唱水平相当,由现场40位大众评委和梅派传人的朋友猜测哪两位是真正的梅派传人.

1)此栏目编导对本期的40位大众评委的年龄和对京剧知识的了解进行调查,根据调查得到的数据如下:

京剧票友

一般爱好者

合计

50岁以上

15

10

25

50岁以下

3

12

15

合计

18

22

40

试问:在犯错误的概率不超过多少的前提下,可以认为年龄的大小与对京剧知识的了解有关系?

2)若在一轮中演唱中,每猜出一位亮相一位,且规定猜出2梅派传人或猜出5人后就终止,记本轮竞猜一共竞猜次,求随机变量的分布列与期望.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.455

0.708

1.323

2.072

2.706

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点为,左右两顶点,点为椭圆上任意一点,满足直线的斜率之积为,且的最大值为4.

1)求椭圆的标准方程;

2)已知直线轴的交点为,过点的直线与椭圆相交与两点,连接点并延长,交轨迹于一点.求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1是由正方形,直角梯形,三角形组成的一个平面图形,其中,将其沿折起使得重合,连接,如图2.

1)证明:图2中的四点共面,且平面平面

2)求图2中的点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩阵,直线经矩阵所对应的变换得到直线,直线又经矩阵所对应的变换得到直线,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司对一个拥有20000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金,保险公司把企业的所有岗位共分为三类工种,从事这三类工种的人数分别为12000,6000,2000,由历史数据统计出三类工种的赔付频率如下表(并以此估计赔付概率):

已知三类工种职工每人每年保费分别为25元、25元、40元,出险后的赔偿金额分别为100万元、100万元、50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.

(1)求保险公司在该业务所或利润的期望值;

(2)现有如下两个方案供企业选择:

方案1:企业不与保险公司合作,职工不交保险,出意外企业自行拿出与保险公司提供的等额赔偿金赔偿付给意外职工,企业开展这项工作的固定支出为每年12万元;

方案2:企业与保险公司合作,企业负责职工保费的70%,职工个人负责保费的30%,出险后赔偿金由保险公司赔付,企业无额外专项开支.

请根据企业成本差异给出选择合适方案的建议.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A02),动点M到点A的距离比动点M到直线y=﹣1的距离大1,动点M的轨迹为曲线C

1)求曲线C的方程;

2Q为直线y=﹣1上的动点,过Q做曲线C的切线,切点分别为DE,求△QDE的面积S的最小值

查看答案和解析>>

同步练习册答案