精英家教网 > 高中数学 > 题目详情

条件:x∈R且f(-x)=f(x)是函数f(x)是偶函数的


  1. A.
    充分而不必要条件
  2. B.
    必要而不充分条件
  3. C.
    充要条件
  4. D.
    既不充分也不必要条件
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,试判断函数f(x)零点个数;
(2)若对?x1,x2∈R,且x1<x2,f(x1)≠f(x2),试证明?x0∈(x1,x2),使f(x0)=
1
2
[f(x1)+f(x2)]
成立.
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件①对?x∈R,f(x-4)=f(2-x),且f(x)≥0;②对?x∈R,都有0≤f(x)-x≤
1
2
(x-1)2
.若存在,求出a,b,c的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:013

条件:xRf(-x)=f(x)是函数f(x)是偶函数的   

[  ]

           

A.充分而不必要条件

  

B.必要而不充分条件

  

C.充要条件

D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省苏州市常熟市高三(上)10月段考数学试卷(解析版) 题型:解答题

已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,试判断函数f(x)零点个数;
(2)若对?x1,x2∈R,且x1<x2,f(x1)≠f(x2),试证明?x∈(x1,x2),使成立.
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件①对?x∈R,f(x-4)=f(2-x),且f(x)≥0;②对?x∈R,都有.若存在,求出a,b,c的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年辽宁省名校高三数学单元测试:算法、复数、推理与证明(解析版) 题型:解答题

已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,试判断函数f(x)零点个数;
(2)若对?x1,x2∈R,且x1<x2,f(x1)≠f(x2),试证明?x∈(x1,x2),使成立.
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件①对?x∈R,f(x-4)=f(2-x),且f(x)≥0;②对?x∈R,都有.若存在,求出a,b,c的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案