精英家教网 > 高中数学 > 题目详情
已知方程x2+xy-6y2-20x-20y+k=0表示两条直线,求:

(1)两条直线的方程;

(2)这两条直线的夹角;

(3)这两条直线相交构成的角平分线的方程.

(1)x+3y-8=0,x-2y-12=0;(2)45°;(3)(-1)x-(2+3)y+8-12=0或(+1)x+(3-2)y-8-12=0.?

解析:(1)设两条直线x+my+n=0,x+ay+b=0.?

(x+my+n)(x+ay+b)=x2+(a+m)xy+(n+b)x+(bm+an)y+amy2+bn=0,?

a=3,m=-2,b=-8,n=-12.

∴两条直线为x+3y-8=0,x-2y-12=0.?

∴两直线为(-1)x-(2+3)y+8-12=0或(+1)x+(3-2)y-8-12=0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:阅读理解

阅读问题:“已知曲线C1:xy+2x+2=0与曲线C2:x-xy+y+a=0有两个公共点,求经过这两个公共点的直线方程.”
解:曲线C1方程与曲线C2方程相加得3x+y+2+a=0,这就是所求的直线方程.
若曲线x2+2y2=1与曲线3y2=ax+b有3个公共点,且它们不共线,则经过这3个公共点得圆的方程是
3x2+3y2+ax+b-3=0
3x2+3y2+ax+b-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照一模)给出下列四个命题:
①若x>0,且x≠1则lgx+
1
lgx
≥2

②设x,y∈R,命题“若xy=0,则x2+y2=0”的否命题是真命题;
③若函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=
1
2
x+2
,则f(1)+f'(1)=3;
④已知抛物线y2=4px(p>0)的焦点F与双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点重合,点A是两曲线的交点,AF⊥x轴,则双曲线的离心率为
2
+1

其中所有真命题的序号是
②③④
②③④

查看答案和解析>>

科目:高中数学 来源: 题型:022

给出下列四个命题:

方程x2+xy+x=0的曲线是一条直线;

已知A(0)B(10)ACB=90°,则在直角坐标平面内ABC的顶点C的轨迹方程是x2+y2=1

如果曲线C上的点的坐标满足方程.F(xy)=0,则点集

若曲线C1,的方程是f1(xy)=0,曲线C2的方程是f2(xy)=0,点P(x0y0)C1C2的交点,则方程f1(xy)+λf2(xy)=0(λ为任意常实数)的曲线经过点P(x0y0)

其中正确命题的序号是________(把你认为正确的命题序号都填上)

 

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:022

给出下列四个命题:

方程x2+xy+x=0的曲线是一条直线;

已知A(0)B(10)ACB=90°,则在直角坐标平面内ABC的顶点C的轨迹方程是x2+y2=1

如果曲线C上的点的坐标满足方程.F(xy)=0,则点集

若曲线C1,的方程是f1(xy)=0,曲线C2的方程是f2(xy)=0,点P(x0y0)C1C2的交点,则方程f1(xy)+λf2(xy)=0(λ为任意常实数)的曲线经过点P(x0y0)



其中正确命题的序号是________(把你认为正确的命题序号都填上)

 

查看答案和解析>>

同步练习册答案