精英家教网 > 高中数学 > 题目详情

【题目】已知各项均不相等的等差数列{an}的前n项和为Sn,若S3=15,且a3+1为a1+1和a7+1的等比中项.

(1)求数列{an}的通项公式与前n项和Sn

(2)设Tn为数列{}的前n项和,问是否存在常数m,使Tn=m[],若存在,求m的值;若不存在,说明理由.

【答案】(1)an=2n+1 Sn=n(n+2)

(2)数m=,见解析

【解析】解:(1)设数列{an}的公差为d,由已知,可得

S3=a1+a2+a3=15,得a2=a1+d=5,

由a3+1为a1+1和a7+1的等比中项,

可得(6+d)2=(6-d)×(6+5d),化简得d2-2d=0,

解得d=0(不合题意,舍去)或d=2,

当d=2时,a1=3,其通项公式为an=3+(n-1)×2=2n+1,前n项和Sn=n(n+2).

(2)由(1)知数列{an}的前n项和为Sn=n(n+2),

则有 (),

Tn (1-+…+)= (1+)= [].

故存在常数m=,使得Tn=m[]成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以下给出了4个命题:

1)两个长度相等的向量一定相等;

2)相等的向量起点必相同;

3)若,且,则

4)若向量的模小于的模,则

其中正确命题的个数共有(

A.3 B.2 C.1 D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子商务公司随机抽取1000名网购者进行调查.这1000名购物者2018年网购金额(单位:万元)均在区间内,样本分组为:,购物金额的频率分布直方图如下:

电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:

购物金额分组

发放金额

50

100

150

200

1)求这1000名购物者获得优惠券金额的平均数;

2)以这1000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数(0, 2π)内有两个不同零点

(1)求实数的取值范围

(2)的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数),

(Ⅰ)写出直线的普通方程和曲线的直角坐标方程;

(Ⅱ)设曲线经过伸缩变换得到曲线,曲线任一点为,求点直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是;②从中有放回的取球6次,每次任取一球,恰好有两次白球的概率为;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为. 则其中正确命题的序号是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中,为自然对数的底数).

(1)讨论函数的单调性;

(2)若分别是的极大值点和极小值点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)求上的最大值和最小值;

(2)把的图像上的所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图像向左平移个单位长度,得到函数的图像,求的单调减区间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形,直线平面,且.

1)求二面角的大小;

2)设E为棱的中点,在的内部或边上是否存在一点,使平面?若存在,求出点的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案