分析 (1)函数y=f(x)=出租自行车的总收入-管理费;当x≤6时,全部租出;当6<x≤20时,每提高1元,租不出去的就增加3辆;所以要分段求出解析式;
(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值.
解答 解:(1)当x≤6时,y=50x-115,令50x-115>0,解得x>2.3.
∵x∈N,∴x≥3,∴3≤x≤6,且x∈N.
当6<x≤20时,y=[50-3(x-6)]x-115=-3x2+68x-115
综上可知$y=\left\{\begin{array}{l}50x-115,(3≤x≤6,x∈N)\\-3{x^2}+68x-115,(6<x≤20,x∈N).\end{array}\right.$
(2)当3≤x≤6,且x∈N时,∵y=50x-115是增函数,
∴当x=6时,ymax=185元.
当6<x≤20,x∈N时,y=-3x2+68x-115=$-3{(x-\frac{34}{3})^2}+\frac{811}{3}$,
∴当x=11时,ymax=270元.
综上所述,当每辆自行车日租金定在11元时才能使日净收入最多,为270元.
点评 本题主要考查分段函数的应用,根据条件建立分段函数关系是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=0 | B. | y=$\frac{1}{2}$(x+5) | C. | y=2x+5 | D. | y=-2x+5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {0,1,2,3,4,5} | B. | {0,1,2,4,6} | C. | {0,1,2,3,4,6} | D. | {0,1,2,4,5,6} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ③④ | B. | ①②④⑤ | C. | ①③④⑤ | D. | ①②③④⑤ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com