精英家教网 > 高中数学 > 题目详情
20.某旅游点有50辆自行车供游客租货使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.
旅游点规定:每辆自行车的日租金不低于3元并且不超过20元,每辆自行车的日租金x元只取整数,用y表示出租所有自行车的日净收入(即一日中出租的所有自行车的总收入减去管理费后的所得).
(1)求函数y=f(x)的解析式;
(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?

分析 (1)函数y=f(x)=出租自行车的总收入-管理费;当x≤6时,全部租出;当6<x≤20时,每提高1元,租不出去的就增加3辆;所以要分段求出解析式;
(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值.

解答 解:(1)当x≤6时,y=50x-115,令50x-115>0,解得x>2.3.
∵x∈N,∴x≥3,∴3≤x≤6,且x∈N.
当6<x≤20时,y=[50-3(x-6)]x-115=-3x2+68x-115
综上可知$y=\left\{\begin{array}{l}50x-115,(3≤x≤6,x∈N)\\-3{x^2}+68x-115,(6<x≤20,x∈N).\end{array}\right.$
(2)当3≤x≤6,且x∈N时,∵y=50x-115是增函数,
∴当x=6时,ymax=185元.
当6<x≤20,x∈N时,y=-3x2+68x-115=$-3{(x-\frac{34}{3})^2}+\frac{811}{3}$,
∴当x=11时,ymax=270元.
综上所述,当每辆自行车日租金定在11元时才能使日净收入最多,为270元.

点评 本题主要考查分段函数的应用,根据条件建立分段函数关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=xlnx和g(x)=m(x2-1)(m∈R)
(Ⅰ)m=1时,求方程f(x)=g(x)的实根;
(Ⅱ)若对于任意的x∈(1,+∞),函数y=g(x)的图象总在函数y=f(x)图象的上方,求m的取值范围;
(Ⅲ)求证:$\frac{4}{4×{1}^{2}-1}$+$\frac{4×2}{4×{2}^{2}-1}$+…+$\frac{4×n}{4×{n}^{2}-1}$>ln(2n+1)(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.入射光线l从P(2,1)出发,经x轴反射后,通过点Q(4,3),则入射光线l所在直线的方程为(  )
A.y=0B.y=$\frac{1}{2}$(x+5)C.y=2x+5D.y=-2x+5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,ABCD是矩形,PA⊥平面ABCD,PA=AD=a,AB=$\sqrt{2}$A,E是线段PD上的点,F是线段AB上的点,且$\frac{PE}{ED}$=$\frac{BF}{FA}$=$\frac{1}{2}$,求直线EF与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若集合U={0,1,2,3,4,5,6},M={0,1,2,3},N={1,3,5},则M∪∁UN等于(  )
A.{0,1,2,3,4,5}B.{0,1,2,4,6}C.{0,1,2,3,4,6}D.{0,1,2,4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知P是△ABC所在平面外的一点,PA、PB、PC两两垂直,且P在△ABC所在平面内的射影H在△ABC内,则H一定是△ABC的垂心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.给出下列结论:①命题“?x∈R,sinx≠1”的否定是“?x∈R,sinx=1”;②命题p:x≠2或y≠3,命题q:x+y≠5则p是q的必要不充分条件;③数列{an}满足“an+1=3an”是“数列{an}为等比数列”的充分必要条件;④“在三角形ABC中,若sinA>sinB,则A>B”的逆命题是真命题;⑤“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”.其中正确的是(  )
A.③④B.①②④⑤C.①③④⑤D.①②③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列四种说法,说法正确的有①③(请填写序号)
①函数y=ax(a>0,且a≠1)与函数y=logaax(a>0,且a≠1)的定义域相同;
②函数f(x)=$\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$和y=$\sqrt{x-1}+\sqrt{1-x}$都是既奇又偶的函数;
③已知对任意的非零实数x都有$f(x)+2f(\frac{1}{x})=2x+1$,则f(2)=-$\frac{1}{3}$;
④函数f(x)在(a,b]和(b,c)上都是增函数,则函数f(x)在(a,c)上一定是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a、b∈R,a>b>e(其中e是自然对数的底数),求证:ba>ab.(提示:可考虑用分析法找思路)

查看答案和解析>>

同步练习册答案