精英家教网 > 高中数学 > 题目详情
2.直线y=$\frac{\sqrt{3}}{3}$x与直线x=1的夹角60°.

分析 根据题意,做出图象,进而通过图象,以及根据两直线的夹角的定义即可求出夹角.

解答 解:分别画出直线y=$\frac{\sqrt{3}}{3}$x与直线x=1的图象,如图所示,
x=1与x轴垂直,
直线y=$\frac{\sqrt{3}}{3}$x与x轴倾斜角为30°,
所以x=1与y=x+3的夹角为60°.
故答案为:60°.

点评 本题主要考查了两条直线的夹角,属于基础题,是高考中常考的问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.函数$y={log_{0.5}}(x+\frac{1}{x-1}+1)$(x>1)的最大值是(  )
A.-2B.2C.3D.log0..53

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.有5列火车停在某车站并行的5条轨道上,若快车A不能停在第3道上,货车B不能停在第1道上,则5列火车的停车方法共有(  )
A.78种B.72种C.120种D.96种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某地决定重新选址建设新城区,同时对旧城区进行拆除.已知旧城区的住房总面积为64am2,每年拆除的数量相同;新城区计划第一年建设住房面积am2,前四年每年以100%的增长率建设新住房,从第五年开始,每年都比上一年增加am2.设第n(n≥1,且n∈N)年新城区的住房总面积为${a_n}{m^2}$,该地的住房总面积为${b_n}{m^2}$.
(1)求{an}的通项公式;
(2)若每年拆除4am2,比较an+1与bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知i是虚数单位,设复数z1=1-3i,z2=3-2i,则$\frac{z_1}{z_2}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ex+ax-1(a为常数,a∈R).
(1)求函数f(x)的单调区间;
(2)若对所有x≥0都有f(x)≥f(-x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校对某班50名学生进行了作业量多少的调查,得到如下列联表(单位:名):喜欢玩电脑游戏与认为作业多少列联表
认为作业多认为作业不多总计
喜欢玩电脑游戏18927
不喜欢玩电脑游戏81523
总计262450
能否在犯错误的概率不超过0.025的前提下认为喜欢玩电脑游戏与认为作业多之间有关系吗?为什么?
附参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=x2+2x+2a与g(x)=|x-1|+|x+a|有相同的最小值,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设等比数列{an}的前n项和为Tn,则Tn,$\frac{{T}_{6}}{{T}_{3}}$,$\frac{{T}_{9}}{{T}_{6}}$,$\frac{{T}_{12}}{{T}_{9}}$成等比数列,类比上述结论,我们有如下真命题:设等差数列{bn}的前n项和为Sn,则S3,S6-S3,S9-S6,S12-S9成等差数列.

查看答案和解析>>

同步练习册答案