精英家教网 > 高中数学 > 题目详情
函数f(x)=|sin2x|+|cos2x|
(Ⅰ)求f(-
12
)的值;
(Ⅱ)当x∈[0,
π
4
]时,求f(x)的取值范围;
(Ⅲ)我们知道,函数的性质通常指函数的定义域、值域、周期性、奇偶性、单调性等,请你探究函数f(x)的性质(本小题只需直接写出结论)
分析:(I)把所给的自变量的值代入函数式,根据诱导公式化简整理出结果.
(II)对函数式进行整理,得到y=Asin(ωx+φ)的形式,根据所给的角的范围写出ωx+φ的范围,根据三角函数的图象得到函数的值域.
(III)根据上一问整理出的函数的解析式,得到函数的定义域、值域、周期性、奇偶性、单调性等.
解答:解:(Ⅰ)f(-
12
)= |sin(-
6
)|+|cos(-
6
)| = |sin
π
6
|+|-cos
π
6
| =
1+
3
2
2分
(Ⅱ)当x∈[0,
π
4
]
时,2x∈[0,
π
2
]
,则sin2x≥0,cos2x≥0…3分
f(x)=sin2x+cos2x=
2
sin(2x+
π
4
)
…5分
又∵x∈[0,
π
4
]

2x+
π
4
∈[
π
4
4
]
sin(2x+
π
4
)∈[
2
2
,1]

∴当x∈[0,
π
4
]
时,f(x)的取值范围为[1,
2
]
.  …7分
(Ⅲ)①f(x)的定义域为R;            …8分
②∵f(-x)=|sin(-2x)|+|cos(-2x)|=|sin2x|+|cos2x|=f(x)∴f(x)为偶函数.                  …9分
③∵f(x+
π
4
)= |sin(2x+
π
2
)|+|cos(2x+
π
2
)| = |cos2x|+|sin2x| =f(x)

∴f(x)是周期为
π
4
的周期函数;          …11分精英家教网
④由(Ⅱ)可知,当x∈[0,
π
4
]
时,f(x)=
2
sin(2x+
π
4
)

∴值域为[1,
2
]
.               …12分
⑤可作出f(x)图象,如图所示:
由图象可知f(x)的增区间为[
4
π
8
+
4
]
(k∈Z),
减区间为[
π
8
+
4
π
4
+
4
]
(k∈Z)          …14分
点评:本题考查三角函数的恒等变形及三角函数的性质,本题考查三角函数利用公式 asinx+bcosx=
a2+b2
sin(x+θ)
化简,再进行三角函数的性质的运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sin2ωx+
3
sinωxsin(ωx+
π
2
)(ω>0)的最小正周期为π.
(1)求ω的值;
(2)求函数f(x)在区间[0,
3
]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

φ∈(0,
π
4
)
,函数f(x)=sin2(x+φ),且f(
π
4
)=
3
4

(Ⅰ)求φ的值;
(Ⅱ)若x∈[0,
π
2
]
,求f(x)的最大值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义[x]表示不超过x的最大整数,记{x}=x-[x],其中对于0≤x≤316时,函数f(x)=sin2[x]+sin2{x}-1和函数g(x)=[x]•{x}-
x
3
-1
的零点个数分别为m,n,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α∈(0,
π
2
)
,x∈R,函数f(x)=sin2(x+α)+sin2(x-α)-sin2x.
(1)求函数f(x)的奇偶性;
(2)是否存在常数α,使得对任意实数x,f(x)=f(
π
2
-x)
恒成立;如果存在,求出所有这样的α;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2
x
2
+
π
12
)+
3
sin(
x
2
+
π
12
)cos(
x
2
+
π
12
)一
1
2

(1)在△ABC中,若sinC=2sinA,B为锐角且有f(B)=
3
2
,求角A,B,C;
(2)若f(x)(x>0)的图象与直线y=
1
2
交点的横坐标由小到大依次是x1,x2,…,xn,求数列{xn}的前2n项和,n∈N*

查看答案和解析>>

同步练习册答案