精英家教网 > 高中数学 > 题目详情

(2009湖南卷理)(本小题满分13分)

在平面直角坐标系xOy中,点P到点F(3,0)的距离的4倍与它到直线x=2的距离的3倍之和记为d,当P点运动时,d恒等于点P的横坐标与18之和           

 (Ⅰ)求点P的轨迹C;

 (Ⅱ)设过点F的直线I与轨迹C相交于M,N两点,求线段MN长度的最大值。

 解析:(Ⅰ)设点P的坐标为(x,y),则3x-2

由题设

当x>2时,由①得

  化简得 

时  由①得

  化简得                        

故点P的轨迹C是椭圆在直线x=2的右侧部分与抛物线在直线x=2的左侧部分(包括它与直线x=2的交点)所组成的曲线,参见图1

(Ⅱ)如图2所示,易知直线x=2与的交点都是A(2,),

B(2,),直线AF,BF的斜率分别为==.

当点P在上时,由②知

.                 ④

当点P在上时,由③知           

                   ⑤

若直线l的斜率k存在,则直线l的方程为

(i)当k≤,或k≥,即k≤-2 时,直线I与轨迹C的两个交点M(),N()都在C 上,此时由④知

MF= 6 -     NF= 6 -             

从而MN= MF+ NF= (6 - )+ (6 - )=12 - ( +)

 得 则是这个方程的两根,所以+=*MN=12 - +)=12 -

因为当

                  

当且仅当时,等号成立。

(2)当时,直线L与轨迹C的两个交点 分别在上,不妨设点上,点上,则④⑤知,

   设直线AF与椭圆的另一交点为E

      

   所以。而点A,E都在上,且

   有(1)知            

若直线的斜率不存在,则==3,此时

综上所述,线段MN长度的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009湖南卷理)从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位                                                              [  ]

A  85             B 56            C 49            D 28  

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷理)设函数在(,+)内有定义。对于给定的正数K,定义函数

                 

取函数=。若对任意的,恒有=,则           

A.K的最大值为2                       B. K的最小值为2

C.K的最大值为1                       D. K的最小值为1                     【 】

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷理)将正ABC分割成≥2,n∈N)个全等的小正三角形(图2,图3分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于ABC的三遍及平行于某边的任一直线上的数(当数的个数不少于3时)都分别一次成等差数列,若顶点A ,B ,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,f(3)=   ,…, 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷理)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.,现在3名工人独立地从中任选一个项目参与建设。           

(I)求他们选择的项目所属类别互不相同的概率;

(II)记为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求 的分布列及数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷理)(本小题满分12分)

如图4,在正三棱柱中,

D是的中点,点E在上,且

(I)                    证明平面平面

(II)                  求直线和平面所成角的正弦值。           

查看答案和解析>>

同步练习册答案