精英家教网 > 高中数学 > 题目详情

【题目】如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在直线上.求:

(1) AD边所在直线的方程;

(2) DC边所在直线的方程.

【答案】(1);(2)

【解析】分析:(1)先由AD与AB垂直,求得AD的斜率,再由点斜式求得其直线方程;

(2)根据矩形特点可以设DC的直线方程为,然后由点到直线的距离得出,就可以求出m的值,即可求出结果.

详解:(1)由题意:ABCD为矩形,则AB⊥AD,

又AB边所在的直线方程为:x-3y-6=0,

所以AD所在直线的斜率kAD=-3,

而点T(-1,1)在直线AD上.

所以AD边所在直线的方程为:3x+y+2=0.

(2)方法一:由ABCD为矩形可得,AB∥DC,

所以设直线CD的方程为x-3y+m=0.

由矩形性质可知点M到AB、CD的距离相等

所以,解得m=2或m=-6(舍).

所以DC边所在的直线方程为x-3y+2=0.

方法二:方程x-3y-6=0与方程3x+y+2=0联立得A(0,-2),关于M的对称点C(4,2)

AB∥DC,所以DC边所在的直线方程为x-3y+2=0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】三棱锥P-ABC中,PC平面ABCPC=AC=2AB=BCDPB上一点,且CD平面PAB

(1)求证:AB平面PCB

(2)求异面直线APBC所成角的大小

(3)求二面角C-PA-B 的大小的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某海域的东西方向上分别有A,B两个观测点(如图),它们相距海里.现有一艘轮船在D点发出求救信号,经探测得知D点位于A点北偏东45°,B点北偏西60°,这时,位于B点南偏西60°且与B点相距海里的C点有一救援船,其航行速度为30海里/小时.

(1)求B点到D点的距离BD;

(2)若命令C处的救援船立即前往D点营救,求该救援船到达D点需要的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中公差d≠0,有a1+a4=14,且a1a2a7成等比数列.

(Ⅰ)求{an}的通项公式an与前n项和公式Sn

(Ⅱ)令bn= (k<0),若{bn}是等差数列,求数列{}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】活水围网养鱼技术具有养殖密度高、经济效益好的特点.研究表明:活水围网养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过/立方米时, 的值为千克/年;当时, 的一次函数,且当时,

)当时,求关于的函数的表达式.

)当养殖密度为多大时,每立方米的鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有甲,乙两个靶,某射手向甲靶射击一次,命中的概率是 ,向乙靶射击两次,每次命中的概率是 ,若该射手每次射击的结果相互独立,则该射手完成以上三次射击恰好命中一次的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为矩形,平面平面,且点上.

)求证:

)求三棱锥的体积

)设点在线段上,且满足,试在线段上确定一点,使得平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛.

I)求应从这三个协会中分别抽取的运动员人数;

II)将抽取的6名运动员进行编号,编号分别为,从这6名运动员中随机抽取2名参加双打比赛.

i)用所给编号列出所有可能的结果;

ii)设A为事件编号为的两名运动员至少有一人被抽到”,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有关部门要了解甲型H1N1流感预防知识在学校的普及情况,命制了一份有10道题的问卷到各个学校做问卷调查。某中学A,B两个班各被随机抽取5名学生接受问卷调查,A班5名学生得分分别为;5, 8, 9, 9, 9:B班5名学生的得分分别为;6, 7, 8, 9, 10。

(1)请你分析A,B两个班中哪个班的问卷得分要稳定些;

(2)如果把B班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取容量为2的样本,求样本平均数与总体平均数之差的绝对值不小于1的概率。

查看答案和解析>>

同步练习册答案