精英家教网 > 高中数学 > 题目详情
6.已知cotα=-2,求tanα,sinα,cosα.

分析 利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,分类讨论求得tanα,sinα,cosα的值.

解答 解:∵cotα=-2,∴tanα=$\frac{1}{cotα}$=-$\frac{1}{2}$,∴α的终边在第二或第四象限,
当α的终边在第二象限时,根据$\frac{sinα}{cosα}$=-$\frac{1}{2}$、sin2α+cos2α=1、以及 sinα>0,
求得sinα=$\frac{\sqrt{5}}{5}$,cosα=-$\frac{2\sqrt{5}}{5}$.
当α的终边在第四象限时,根据$\frac{sinα}{cosα}$=-$\frac{1}{2}$、sin2α+cos2α=1、以及 sinα<0,
求得sinα=-$\frac{\sqrt{5}}{5}$,cosα=$\frac{2\sqrt{5}}{5}$.

点评 本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知关于x的不等式kx2-2x+6k<0;
(1)若不等式的解集为(2,3),求实数k的值;
(2)若k>0,且不等式对一切2<x<3都成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若三点A(2,3),B(5,0),C(0,b)(b≠0)共线,则b=(  )
A.2B.3C.5D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数$f(x)=\frac{x}{x-1}$的值域是(-∞,1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设$f(x)={log_2}\frac{x+1}{x-1}$,函数y=g(x)的图象与y=f-1(x+1)的图象关于直线y=x对称,则g(3)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=|x-1|的递增区间是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=x2+px+q和$g(x)=x+\frac{4}{x}$是定义在$A=\left\{{x|1≤x≤\frac{5}{2}}\right\}$上的函数,对任意的x∈A,存在常数x0∈A,使f(x)≥f(x0),g(x)≥g(x0)且f(x0)=g(x0),则f(x)在A上的最大值为(  )
A.$\frac{5}{2}$B.$\frac{17}{4}$C.5D.$\frac{41}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=\frac{sin(π+x)cos(π-x)}{{sin(\frac{π}{2}-x)cos(2π+x)}}$.
(1)化简函数f(x)的解析式;
(2)若α为第三象限角且$f(α)=\frac{1}{3}$,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点A(1,-3),B(-5,5),则线段AB中点到直线4x-3y+1=0的距离等于(  )
A.$\frac{4}{5}$B.$\frac{10}{7}$C.$\frac{12}{5}$D.2

查看答案和解析>>

同步练习册答案