分析 (1)由双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率$\frac{\sqrt{6}}{2}$,可得a,c的关系,进而可得a,b的关系,即可求双曲线C的渐近线方程;
(2)利用双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率$\frac{\sqrt{6}}{2}$,它的一个顶点到较近的焦点的距离为$\sqrt{3}$-$\sqrt{2}$,建立方程,求出a,c,可得b,即可求出双曲线的标准方程.
解答 解:(1)∵双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率$\frac{\sqrt{6}}{2}$,
∴$\frac{c}{a}$=$\frac{\sqrt{6}}{2}$,
∴1+$\frac{{b}^{2}}{{a}^{2}}$=$\frac{3}{2}$,
∴$\frac{b}{a}$=$\frac{\sqrt{2}}{2}$,
∴双曲线C的渐近线方程为y=±$\frac{\sqrt{2}}{2}$x;
(2)∵双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率$\frac{\sqrt{6}}{2}$,它的一个顶点到较近的焦点的距离为$\sqrt{3}$-$\sqrt{2}$,
∴$\frac{c}{a}$=$\frac{\sqrt{6}}{2}$,c-a=$\sqrt{3}$-$\sqrt{2}$,
∴c=$\sqrt{3}$,a=$\sqrt{2}$
∴b=1,
∴双曲线的标准方程为$\frac{{x}^{2}}{2}-{y}^{2}$=1.
点评 本题考查双曲线的渐近线方程,标准方程,考查学生的计算能力,比较基础.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com