精英家教网 > 高中数学 > 题目详情
16.已知实数x,y满足$\left\{\begin{array}{l}1≤x≤2\\ y≤2\\ 2x-y≤2\end{array}\right.$,则z=2x+y的最大值为(  )
A.0B.2C.4D.6

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求出最优解即可求最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x=2}\\{2x-y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即A(2,2),
代入目标函数z=2x+y得z=2×2+2=6.
即目标函数z=2x+y的最大值为6.
故选:D

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{2π{R}^{3}}{3}$B.$\frac{4π{R}^{3}}{3}$C.πR3D.$\frac{π{R}^{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.将函数f(x)=$\sqrt{3}$sin2x-cos2x的图象向左平移$\frac{π}{6}$个单位,所得图象其中一条对称轴方程为(  )
A.x=0B.x=$\frac{π}{6}$C.x=$\frac{π}{4}$D.x=$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.由直线与圆相切时,圆心与切点连线与直线垂直,想到平面与球相切时,球心与切点连线与平面垂 直,用的是(  )
A.类比推理B.演绎推理C.归纳推理D.传递性推理

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在直角坐标系中,坐标原点到直线l:3x+4y-10=0的距离是(  )
A.10B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某建筑物是由一个半球和一个圆柱组成,半球的体积是圆柱体积的$\frac{1}{4}$,其三视图如图所示,现需要在该建筑物表面涂一层防晒涂料,若每π个平方单位所需涂料费用为100元,则共需涂料费用(  )
A.6600元B.7500元C.8400元D.9000元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)的导函数是f′(x),且满足f(x)=2xf′(e)-lnx,则f′(e)等于(  )
A.1B.-1C.eD.$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数z=$\frac{2}{i-1}$,设$\overline{z}$是z的共轭复数,则复数$\overline{z}$在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)经过点($\frac{π}{12}$,-2),($\frac{7π}{12}$,2),且在区间($\frac{π}{12}$,$\frac{7π}{12}$)上为单调函数,设an=nf($\frac{nπ}{3}$)(n∈N*),则数列{an}的前30项和S30为(  )
A.-10$\sqrt{3}$B.-$\sqrt{3}$C.$\sqrt{3}$D.10$\sqrt{3}$

查看答案和解析>>

同步练习册答案