精英家教网 > 高中数学 > 题目详情
若函数f(x)=x2-2bx+3a在区间(0,1)内有极小值,则实数b的取值范围是( )
A.b<1
B.b>1
C.0<b<1
D.
【答案】分析:利用求导法则对函数f(x)=x2-2bx+3a求导数,再令导数等于0,即得函数的极小值点为x=b,由此不难得到本题的答案.
解答:解:∵f(x)=x2-2bx+3a的导数为f'(x)=2x-2b,
∴f(x)极小值点是方程2x-2b=0的根,即x=b
又∵函数f(x)在区间(0,1)内有极小值,
∴0<b<1
故选C
点评:本题给出二次函数的极小值点在指定区间内,求参数的取值范围,着重考查了利用导数求函数极值和二次函数的性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=x2+ax-1在x∈[1,3]是单调递减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=|x2-4x|-a的零点个数为3,则a=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
-x2+2x+3
,则f(x)的单调递增区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2•lga-6x+2与X轴有且只有一个公共点,那么实数a的取值范围是
a=1或a=10
9
2
a=1或a=10
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南二模)下列命题:
①若函数f(x)=x2-2x+3,x∈[-2,0]的最小值为2;
②线性回归方程对应的直线
?
y
=
?
b
x+
?
a
至少经过其样本数据点(x1,y1),(x2,y2),…,(xn,yn)中的一个点;
③命题p:?x∈R,使得x2+x+1<0则¬p:?x∈R,均有x2+x+1≥0;
④若x1,x2,…,x10的平均数为a,方差为b,则x1+5,x2+5,…,x10+5的平均数为a+5,方差为b+25.
其中,错误命题的个数为(  )

查看答案和解析>>

同步练习册答案