【题目】乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1比2的概率;
(2)ξ表示开始第4次发球时乙的得分,求ξ的期望.
【答案】
(1)
解:记Ai表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2;A表示事件:第3次发球,甲得1分;
B表示事件:开始第4次发球,甲、乙的比分为1比2,则B=A0A+A1
∵P(A)=0.4,P(A0)=0.16,P(A1)=2×0.6×0.4=0.48
∴P(B)=0.16×0.4+0.48×(1﹣0.4)=0.352;
(2)
解:P(A2)=0.62=0.36,ξ表示开始第4次发球时乙的得分,可取0,1,2,3
P(ξ=0)=P(A2A)=0.36×0.4=0.144
P(ξ=2)=P(B)=0.352
P(ξ=3)=P(A0 )=0.16×0.6=0.096
P(ξ=1)=1﹣0.144﹣0.352﹣0.096=0.408
∴ξ的期望Eξ=1×0.408+2×0.352+3×0.096=1.400.
【解析】(1)记Ai表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2;A表示事件:第3次发球,甲得1分;B表示事件:开始第4次发球,甲、乙的比分为1比2,则B=A0A+A1 ,根据P(A)=0.4,P(A0)=0.16,P(A1)=2×0.6×0.4=0.48,即可求得结论;(2)P(A2)=0.62=0.36,ξ表示开始第4次发球时乙的得分,可取0,1,2,3,计算相应的概率,即可求得ξ的期望.
科目:高中数学 来源: 题型:
【题目】在等差数列{an}中,a3+a4+a5=84,a9=73.
(1)求数列{an}的通项公式;
(2)对任意m∈N* , 将数列{an}中落入区间(9m , 92m)内的项的个数记为bm , 求数列{bm}的前m项和Sm .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设p:实数x满足x2-5ax+4a2<0(其中a>0),q:实数x满足2<x≤5.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若q是p的必要不充分条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须整改.若整改后经复查仍不合格,则强制关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8.计算(结果精确到0.01):
(1)恰好有两家煤矿必须整改的概率.
(2)平均有多少家煤矿必须整改?
(3)至少关闭一家煤矿的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y=(x+1)2与圆 (r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.
(1)求r;
(2)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x),满足当x>0时,f(x)>1,且对任意的x,y,有,f(1)=2,且.
(1)求f(0)的值;
(2)求证:对任意x,都有f(x)>0;
(3)解不等式f(32x)>4.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A、B、C的对边分别为a,b,c.角A,B,C成等差数列.
(1)求cosB的值;
(2)边a,b,c成等比数列,求sinAsinC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数h(x)满足
①h(0)=1,h(1)=0;
②对任意a∈[0,1],有h(h(a))=a;
③在(0,1)上单调递减.则称h(x)为补函数.已知函数h(x)= (λ>﹣1,p>0)
(1)判函数h(x)是否为补函数,并证明你的结论;
(2)若存在m∈[0,1],使得h(m)=m,若m是函数h(x)的中介元,记p= (n∈N+)时h(x)的中介元为xn , 且Sn= ,若对任意的n∈N+ , 都有Sn< ,求λ的取值范围;
(3)当λ=0,x∈(0,1)时,函数y=h(x)的图象总在直线y=1﹣x的上方,求P的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com