【题目】如图1,已知直角梯形ABCD中,,AB//DC,AB⊥AD,E为CD的中点,沿AE把△DAE折起到△PAE的位置(D折后变为P),使得PB=2,如图2.
(Ⅰ)求证:平面PAE⊥平面ABCE;
(Ⅱ)求点B到平面PCE的距离.
【答案】(1)见解析(2)
【解析】试题分析:取的中点,连接,,,可知,为等腰直角三角形,证得,,再由勾股定理证得,即可证明 利用等体积法,即可求点到平面的距离
解析:(Ⅰ)如图,取AE的中点O,连接PO,OB,BE.由于在平面图形中,如题图1,连接BD,BE,易知四边形ABED为正方形, ∴在立体图形中,△PAE,△BAE为等腰直角三角形,
∴PO⊥AE,OB⊥AE,PO=OB=,
∵PB=2,∴,
∴PO⊥OB
又,∴平面PO⊥平面ABCE,
∵PO平面PAE,∴平面PAE⊥平面ABCD
(Ⅱ)由(Ⅰ)可知,PO⊥AE,OB⊥AE,,故AE⊥平面POB.
∵PB平面POB,∴AE⊥PB,又BC//AE,∴BC⊥PB.
在Rt△PBC中,
在△PEC中,PE=CE=2,
∴
设点B到平面PCE的距离为d,由,
得
科目:高中数学 来源: 题型:
【题目】二进制规定:每个二进制数由若干个0、1组成,且最高位数字必须为1.若在二进制中,是所有位二进制数构成的集合,对于,,表示和对应位置上数字不同的位置个数.例如当,时,当,时.
(1)令,求所有满足,且的的个数;
(2)给定,对于集合中的所有,求的和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系.
(1)在极坐标系下,设曲线与射线和射线分别交于,两点,求的面积;
(2)在直角坐标系下,直线的参数方程为(为参数),直线与曲线相交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线与椭圆相交于两点,与轴, 轴分别相交于点和点,且,点是点关于轴的对称点, 的延长线交椭圆于点,过点分别做轴的垂线,垂足分别为.
(1) 若椭圆的左、右焦点与其短轴的一个端点是正三角形的三个顶点,点在椭圆上,求椭圆的方程;
(2)当时,若点平分线段,求椭圆的离心率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线a与平面所成角的为30o,直线b在平面内,且与b异面,若直线a与直线b所成的角为,则( )
A. 0<≤30 B. 0<≤90 C. 30≤≤90 D. 30≤≤180
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)求曲线的普通方程和直线的倾斜角;
(2)设点,直线和曲线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面,为直角梯形,与相交于点,,,,三棱锥的体积为9.
(1)求的值;
(2)过点的平面平行于平面,与棱,,,分别相交于点,求截面的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com