精英家教网 > 高中数学 > 题目详情

【题目】设函数.

1)求出函数的定义域;

2)若当时,上恒正,求出的取值范围;

3)若函数上单调递增,求出的取值范围.

【答案】1)当时,不等式解集为

时,不等式解集为.

2 3

【解析】

1)根据对数函数的性质解含参的一元二次不等式即可.

2)由(1)确定函数的定义域,令,得出单调递减,进而使即可.

3)任取,满足,讨论的取值范围,研究函数的单调性即可求解.

1)由题知.

时,,所以不等式解集为.

时,,所以不等式解集为.

综上所述,当时,不等式解集为

时,不等式解集为.

2)当时,定义域为,令

单调递减,所以.

.

因为上恒正,所以,即,解得.

3)任取,满足.

二次函数的对称轴

所以上单调递增,即.

时,,即,不满足题意舍去.

,且时,,即

所以当上单调递增.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某森林出现火灾,火势正以每分钟的速度顺风蔓延,消防站接到警报立即派消防队员前去,在火灾发生后分钟到达救火现场,已知消防队员在现场平均每人每分钟灭火,所消耗的灭火材料、劳务津贴等费用为每人每分钟125元,另附加每次救火所损耗的车辆、器械和装备等费用平均每人100元,而烧毁一平方米森林损失费为60元.

(1)设派名消防队员前去救火,用分钟将火扑灭,试建立的函数关系式;

(2)问应该派多少名消防队员前去救火,才能使总损失最少?

(总损失=灭火材料、劳务津贴等费用+车辆、器械和装备费用+森林损失费)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了治理大气污染,某市2017年初采用了一系列措施,比如“煤改电”,“煤改气”,“整治散落污染企业”等.下表是该市2016年11月份和2017年11月份的空气质量指数()(指数越小,空气质量越好)统计表.根据表中数据回答下列问题:

(1)将2017年11月的空气质量指数数据用该天的对应日期作为样本编号,再用系统抽样方法从中抽取6个数据,若在2017年11月16日到11月20日这五天中用简单随机抽样抽取到的样本的编号是19号,写出抽出的样本数据;

(2)根据《环境空气质量指数()技术规定(试行)》规定:当空气质量指数为(含50)时,空气质量级别为一级,用从(1)中抽出的样本数据中随机抽取三天的数据,空气质量级别为一级的天数为,求的分布列及数学期望;

(3)求出这两年11月空气质量指数为一级的概率,你认为该市2017年初开始采取的这些大气污染治理措施是否有效?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某综艺节目为比较甲、乙两名选手的各项能力(指标值满分为5分,分值高者为优),绘制了如图所示的六维能力雷达图,图中点A表示甲的创造力指标值为4,点B表示乙的空间能力指标值为3,则下面叙述正确的是

A. 乙的记忆能力优于甲的记忆能力

B. 乙的创造力优于观察能力

C. 甲的六大能力整体水平优于乙

D. 甲的六大能力中记忆能力最差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,离心率

(I)求椭圆C的标准方程;

(II)已知直线交椭圆C于A,B两点.

①若直线经过椭圆C的左焦点F,交y轴于点P,且满足.求证:为定值;

②若,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,求不等式的解集;

2若关于x的不等式有实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于不等式.

1)若该不等式的解集为空集,求函数的最大值;

2)若,该不等式能成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数图象上是否存在两条互相垂直的切线若存在求出这两条切线若不存在说明理由.

(2)若函数上有零点求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】进入冬天,大气流动性变差,容易形成雾握天气,从而影响空气质量.某城市环保部门试图探究车流量与空气质量的相关性,以确定是否对车辆实施限行.为此,环保部门采集到该城市过去一周内某时段车流量与空气质量指数的数据如下表:

时间

周一

周二

周三

周四

周五

周六

周日

车流量(x万辆)

10

9

9.5

10.5

11

8

8.5

空气质量指数y

78

76

77

79

80

73

75

(1)根据表中周一到周五的数据,求关于的线性回归方程;

(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2,则认为得到的线性回归方程是可靠的.请根据周六和周日数据,判定所得的线性回归方程是否可靠?

附:回归方程中斜率和截距最小二乘估计公式分别为:

其中:

查看答案和解析>>

同步练习册答案